1
|
Heisterberg L, Manfredi L, Wichmann D, Maier T, Pott PP. Design and evaluation of new user control devices for improved ergonomics in flexible robotic endoscopy. Front Robot AI 2025; 12:1559574. [PMID: 40196841 PMCID: PMC11973676 DOI: 10.3389/frobt.2025.1559574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Background The ergonomics of flexible endoscopes require improvement as the current design carries a high risk of musculoskeletal injury for endoscopists. Robotic systems offer a solution by separating the endoscope from the control handle, allowing a focus on ergonomics and usability. Despite the increasing interest in this field, little attention has been paid towards developing ergonomic human input devices. This study addresses two key questions: How can handheld control devices for flexible robotic endoscopy be designed to prioritize ergonomics and usability? And, how effective are these new devices in a simulated clinical environment? Methods Addressing this gap, the study proposes two handheld input device models for controlling a flexible endoscope in four degrees of freedom (DOFs) and an endoscopic instrument in three DOFs. A two-stage evaluation was conducted with six endoscopists evaluating the physical ergonomics and a final clinical user evaluation with seven endoscopists using a virtual colonoscopy simulator with proportional velocity and position mapping. Results and discussion Both models demonstrated clinical suitability, with the first model scoring 4.8 and the second model scoring 5.2 out of 6 in the final evaluation. In sum, the study presents two designs of ergonomic control devices for robotic colonoscopy, which have the potential to reduce endoscopy-related injuries. Furthermore, the proposed colonoscopy simulator is useful to evaluate the benefits of different mapping modes. This could help to optimize the design and control mechanism of future control devices.
Collapse
Affiliation(s)
- Leander Heisterberg
- Institute of Medical Device Technology, University of Stuttgart, Stuttgart, Germany
- Division of Imaging Science and Technology, Centre of Medical Engineering and Technology (CMET), School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Luigi Manfredi
- Division of Imaging Science and Technology, Centre of Medical Engineering and Technology (CMET), School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Dörte Wichmann
- Central Endoscopic Unit of the University Hospital Tübingen, Tübingen, Germany
| | - Thomas Maier
- Institute for Engineering Design and Industrial Design, University of Stuttgart, Stuttgart, Germany
| | - Peter P. Pott
- Institute of Medical Device Technology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Gopalakrishnan V, Dey N, Chlorogiannis DD, Abumoussa A, Larson AM, Orbach DB, Frisken S, Golland P. Rapid patient-specific neural networks for intraoperative X-ray to volume registration. ARXIV 2025:arXiv:2503.16309v1. [PMID: 40166742 PMCID: PMC11957231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures. Achieving this requires the rapid and precise alignment of 2D intraoperative images (e.g., X-ray) with 3D preoperative volumes (e.g., CT, MRI). However, current 2D/3D registration methods fail across the broad spectrum of procedures dependent on X-ray guidance: traditional optimization techniques require custom parameter tuning for each subject, whereas neural networks trained on small datasets do not generalize to new patients or require labor-intensive manual annotations, increasing clinical burden and precluding application to new anatomical targets. To address these challenges, we present xvr, a fully automated framework for training patient-specific neural networks for 2D/3D registration. xvr uses physics-based simulation to generate abundant high-quality training data from a patient's own preoperative volumetric imaging, thereby overcoming the inherently limited ability of supervised models to generalize to new patients and procedures. Furthermore, xvr requires only 5 min of training per patient, making it suitable for emergency interventions as well as planned procedures. We perform the largest evaluation of a 2D/3D registration algorithm on real X-ray data to date and find that xvr robustly generalizes across a diverse dataset comprising multiple anatomical structures, imaging modalities, and hospitals. Across surgical tasks, xvr achieves submillimeter-accurate registration at intraoperative speeds, improving upon existing methods by an order of magnitude. xvr is released as open-source software freely available at https://github.com/eigenvivek/xvr.
Collapse
Affiliation(s)
- Vivek Gopalakrishnan
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Neel Dey
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Andrew Abumoussa
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna M. Larson
- Department of Interventional Neuroradiology, Boston Children’s Hospital, Boston, MA, USA
| | - Darren B. Orbach
- Department of Interventional Neuroradiology, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah Frisken
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Polina Golland
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Saghaie T, Williamson JP, Phillips M, Kafili D, Sundar S, Hogarth DK, Ing A. First-in-human use of a new robotic electromagnetic navigation bronchoscopic platform with integrated Tool-in-Lesion Tomosynthesis (TiLT) technology for peripheral pulmonary lesions: The FRONTIER study. Respirology 2024; 29:969-975. [PMID: 38923084 DOI: 10.1111/resp.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND OBJECTIVE As the presentation of pulmonary nodules increases, the importance of a safe and accurate method of sampling peripheral pulmonary nodules is highlighted. First-generation robotic bronchoscopy has successfully assisted navigation and improved peripheral reach during bronchoscopy. Integrating tool-in-lesion tomosynthesis (TiLT) may further improve yield. METHODS We performed a first-in-human clinical trial of a new robotic electromagnetic navigation bronchoscopy system with integrated digital tomosynthesis technology (Galaxy System, Noah Medical). Patients with moderate-risk peripheral pulmonary nodules were enrolled in the study. Robotic bronchoscopy was performed using electromagnetic navigation with TiLT-assisted lesion guidance. Non-specific results were followed up until either a clear diagnosis was achieved or repeat radiology at 6 months demonstrated stability. RESULTS Eighteen patients (19 nodules) were enrolled. The average lesion size was 20 mm, and the average distance from the pleura was 11.6 mm. The target was successfully reached in 100% of nodules, and the biopsy tool was visualized inside the target lesion in all cases. A confirmed specific diagnosis was achieved in 17 nodules, 13 of which were malignant. In one patient, radiological monitoring confirmed a true non-malignant result. This translates to a yield of 89.5% (strict) to 94.7% (intermediate). Complications included one pneumothorax requiring observation only and another requiring an overnight chest drain. There was one case of severe pneumonia following the procedure. CONCLUSION In this first-in-human study, second-generation robotic bronchoscopy using electromagnetic navigation combined with integrated digital tomosynthesis was feasible with an acceptable safety profile and demonstrated a high diagnostic yield for small peripheral lung nodules.
Collapse
Affiliation(s)
- Tajalli Saghaie
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jonathan P Williamson
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Martin Phillips
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Dona Kafili
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sarika Sundar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Alvin Ing
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Griffiths S, Power L, Breen D. Pulmonary endoscopy - central to an interventional pulmonology program. Expert Rev Respir Med 2024; 18:843-860. [PMID: 39370862 DOI: 10.1080/17476348.2024.2413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Pulmonary endoscopy occupies a central role in Interventional Pulmonology and is frequently the mainstay of diagnosis of respiratory disease, in particular lung malignancy. Older techniques such as rigid bronchoscopy maintain an important role in central airway obstruction. Renewed interest in the peripheral pulmonary nodule is driving major advances in technologies to increase the diagnostic accuracy and advance new potential endoscopic therapeutic options. AREAS COVERED This paper describes the role of pulmonary endoscopy, in particular ultrasound in the diagnosis and staging of lung malignancy. We will explore the recent expansion of ultrasound to include endoscopic ultrasound - bronchoscopy (EUS-B) and combined ultrasound (CUS) techniques. We will discuss in detail the advances in the workup of the peripheral pulmonary nodule.We performed a non-systematic, narrative review of the literature to summarize the evidence regarding the indications, diagnostic yield, and safety of current bronchoscopic sampling techniques. EXPERT OPINION EBUS/EUS-B has revolutionized the diagnosis and staging of thoracic malignancy resulting in more accurate assessment of the mediastinum compared to mediastinoscopy alone, thus reducing the rate of futile thoracotomies. Although major advances in the assessment of the peripheral pulmonary nodule have been made, the role of endoscopy in this area requires further clarification and investigation.
Collapse
Affiliation(s)
- Sally Griffiths
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| | - Lucy Power
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| | - David Breen
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
5
|
Fernandez-Bussy S, Chandra NC, Koratala A, Yu Lee-Mateus A, Barrios-Ruiz A, Garza-Salas A, Koirala T, Funes-Ferrada R, Balasubramanian P, Patel NM, Chadha R, Hazelett BN, Robertson KS, Reisenauer J, Abia-Trujillo D. Robotic-assisted bronchoscopy: a narrative review of systems. J Thorac Dis 2024; 16:5422-5434. [PMID: 39268090 PMCID: PMC11388208 DOI: 10.21037/jtd-24-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024]
Abstract
Background and Objective Robotic-assisted bronchoscopy (RAB) has emerged as an advanced technology for lung cancer diagnosis. This review explores the three approved robotic bronchoscopy systems: Ion™ Endoluminal (Intuitive Surgical, Sunnyvale, CA, USA), Monarch™ (Johnson & Johnson, Redwood City, CA, USA), and Galaxy System™ (Noah Medical, San Carlos, CA, USA), and their different operational systems. This narrative review aims to summarize their findings and outcomes for sampling peripheral pulmonary lesions (PPL) suspected of lung cancer. Methods A search in PubMed and Google Scholar databases was conducted for articles and abstracts published between January 2018 to May 2024 using the terms "robotic bronchoscopy" or "robotic-assisted bronchoscopy" for biopsy of PPL. Key Content and Findings Lung cancer is the leading cause of cancer-related mortality. The introduction of RAB aims to improve the feasibility and safety of sampling PPL. Current literature describes high diagnostic yields with low risk of complications, allowing concurrent hilar and mediastinal staging within the same procedure. RAB can potentially improve early diagnosis and treatment of pulmonary malignancies and survival rate in long term, while progressing towards therapeutic applications in the near future. Conclusions As RAB evolves, its potential as a "one-stop shop" for diagnosis, staging, and treatment can positively impact lung cancer detection, focusing on improved patient-centered outcomes and reducing multiple diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
| | - Nikitha C Chandra
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Anoop Koratala
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Alanna Barrios-Ruiz
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Garza-Salas
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Tapendra Koirala
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Rodrigo Funes-Ferrada
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Neal M Patel
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan Chadha
- Department of Anesthesiology, Mayo Clinic, Jacksonville, FL, USA
| | - Britney N Hazelett
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Kelly S Robertson
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Janani Reisenauer
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Abia-Trujillo
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
6
|
Sumner ET, Chang J, Patel PR, Bedi H, Shaller BD. State of the art: peripheral diagnostic bronchoscopy. J Thorac Dis 2024; 16:5409-5421. [PMID: 39268128 PMCID: PMC11388231 DOI: 10.21037/jtd-24-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
Lung cancer is the leading cause of cancer related death worldwide and in the United States according to the World Health Organization and National Cancer Institute. Improvements in the diagnosis and treatment of lung cancer are of the utmost importance. A prompt diagnosis is a crucial factor to improve outcomes in the treatment of lung cancer. Although the implementation of lung cancer screening guidelines and the overall steady growth in the use of computed tomography have improved the likelihood of detecting lung cancer at an earlier stage, the diagnosis of peripheral pulmonary lesions (PPLs) has remained a challenge. The bronchoscopic techniques for PPL sampling have historically offered modest diagnostic yields at best in comparison to computed tomography guided transthoracic needle aspiration (TTNA). Fortunately, recent advances in technology have ushered in a new era of diagnostic peripheral bronchoscopy. In this review, we discuss the introduction of advanced intraprocedural imaging included digital tomosynthesis (DT), augmented fluoroscopy (AF), and cone beam computed tomography. We discuss robotic assisted bronchoscopy with a review of the currently available platforms, and we discuss the implementation of novel biopsy tools. These technologic advances in the bronchoscopic approach to PPLs offer greater diagnostic certainty and pave the way toward peripheral therapeutics in bronchoscopy.
Collapse
Affiliation(s)
- Eric T Sumner
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiwoon Chang
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pranjal R Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harmeet Bedi
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian D Shaller
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Leong TL, Steinfort DP. Contemporary Concise Review 2023: Advances in lung cancer and interventional pulmonology. Respirology 2024; 29:665-673. [PMID: 38960450 DOI: 10.1111/resp.14789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Eligibility criteria for lung cancer screening increasingly need to consider family history of lung cancer, as well as age and smoking status. Lung cancer screening will reveal a multitude of incidental findings, of variable clinical significance, and with a need for clear pathways of management. Pulmonary nodule sampling is enhanced by intra-procedural imaging and cutting-edge robotic technology. Systematic thoracic lymph node sampling has implications for treatment efficacy. Bronchoscopic ablative techniques are feasible for peripheral lung cancers. Bronchoscopic sampling continues to have a high yield for lung cancer molecular characterization. Immunotherapy indications have expanded to include early stage and resectable lung cancer.
Collapse
Affiliation(s)
- Tracy L Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel P Steinfort
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
LIU B. [Clinical Application of Robotic Assisted Bronchoscopy
in Peripheral Pulmonary Nodule Biopsy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:291-298. [PMID: 38769832 PMCID: PMC11110265 DOI: 10.3779/j.issn.1009-3419.2024.106.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 05/22/2024]
Abstract
With the popularization of chest computed tomography (CT) lung cancer screening, the detection rate of peripheral pulmonary nodules is increasing day by day. Some patients could make clear diagnoses and receive early treatment by obtaining biopsy specimens. Transbronchial lung biopsy (TBLB) is one of the non-surgical biopsy methods for peripheral pulmonary nodules, which has less trauma and lower incidence of complications compared to percutaneous thoracic needle biopsy (PTNB). However, the diagnostic rate of TBLB is about 70%, which is still inferior to that of PTNB, which is about 90%. Since 2018, robot assisted bronchoscopy systems have been applied in clinical practice. This article reviews their application in further improving the diagnostic rate of peripheral pulmonary nodules by TBLB.
.
Collapse
|
9
|
Abdelghani R, Omballi M, Abia-Trujillo D, Casillas E, Villalobos R, Badar F, Bansal S, Kheir F. Imaging modalities during navigational bronchoscopy. Expert Rev Respir Med 2024; 18:175-188. [PMID: 38794918 DOI: 10.1080/17476348.2024.2359601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Lung nodules are commonly encountered in clinical practice. Technological advances in navigational bronchoscopy and imaging modalities have led to paradigm shift from nodule screening or follow-up to early lung cancer detection. This is due to improved nodule localization and biopsy confirmation with combined modalities of navigational platforms and imaging tools. To conduct this article, relevant literature was reviewed via PubMed from January 2014 until January 2024. AREAS COVERED This article highlights the literature on different imaging modalities combined with commonly used navigational platforms for diagnosis of peripheral lung nodules. Current limitations and future perspectives of imaging modalities will be discussed. EXPERT OPINION The development of navigational platforms improved localization of targets. However, published diagnostic yield remains lower compared to percutaneous-guided biopsy. The discordance between the actual location of lung nodule during the procedure and preprocedural CT chest is the main factor impacting accurate biopsies. The utilization of advanced imaging tools with navigation-based bronchoscopy has been shown to assist with localizing targets in real-time and improving biopsy success. However, it is important for interventional bronchoscopists to understand the strengths and limitations of these advanced imaging technologies.
Collapse
Affiliation(s)
- Ramsy Abdelghani
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Mohamed Omballi
- Department of Pulmonary and Critical Care Medicine, University of Toledo, Toledo, OH, USA
| | - David Abia-Trujillo
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ernesto Casillas
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina Villalobos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Faraz Badar
- Department of Pulmonary and Critical Care Medicine, University of Toledo, Toledo, OH, USA
| | - Sandeep Bansal
- The Lung Center, Penn Highlands Healthcare, DuBois, PA, USA
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zhang C, Xie F, Li R, Cui N, Herth FJF, Sun J. Robotic-assisted bronchoscopy for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Thorac Cancer 2024; 15:505-512. [PMID: 38286133 PMCID: PMC10912532 DOI: 10.1111/1759-7714.15229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/31/2024] Open
Abstract
Robotic-assisted bronchoscopy (RAB) is a newly developed bronchoscopic technique for the diagnosis of peripheral pulmonary lesions (PPLs). The objective of this meta-analysis was to analyze the diagnostic yield and safety of RAB in patients with PPLs. Five databases (PubMed, Embase, Web of Science, CENTRAL, and ClinicalTrials.gov) were searched from inception to April 2023. Two independent investigators screened retrieved articles, extracted data, and assessed the study quality. The pooled diagnostic yield and complication rate were estimated. Subgroup analysis was used to explore potential sources of heterogeneity. Publication bias was assessed using funnel plots and the Egger test. Sensitivity analysis was also conducted to assess the robustness of the synthesized results. A total of 725 lesions from 10 studies were included in this meta-analysis. No publication bias was found. Overall, RAB had a pooled diagnostic yield of 80.4% (95% CI: 75.7%-85.1%). Lesion size of >30 mm, presence of a bronchus sign, and a concentric radial endobronchial ultrasound view were associated with a statistically significantly higher diagnostic yield. Heterogeneity exploration showed that studies using cryoprobes reported better yields than those without cryoprobes (90.0%, 95% CI: 83.2%-94.7% vs. 79.0%, 95% CI: 75.8%-82.2%, p < 0.01). The pooled complication rate was 3.0% (95% CI: 1.6%-4.4%). In conclusion, RAB is an effective and safe technique for PPLs diagnosis. Further high-quality prospective studies still need to be conducted.
Collapse
Affiliation(s)
- Chunxi Zhang
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Runchang Li
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Ningxin Cui
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Felix J. F. Herth
- Department of Pneumology and Critical Care Medicine, ThoraxklinikUniversity of HeidelbergHeidelbergGermany
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| |
Collapse
|
11
|
Graham J, Basist M, Frye L, Agrawal A, Nasim F. Advances in navigating to the nodule and targeting. Curr Opin Pulm Med 2024; 30:9-16. [PMID: 37930633 DOI: 10.1097/mcp.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW The multitude of available platforms and imaging modalities for navigational bronchoscopy, in combination with the various sampling tools that can be used intra-procedurally, is complex. This review seeks to describe the recent developments in peripheral bronchoscopy in regards to navigation, imaging, and sampling target lesions in the pulmonary parenchyma. RECENT FINDINGS Robotic assisted bronchoscopy has improved navigation to the peripheral airways for sampling of peripheral parenchymal lesions. These navigational platforms use innovative technology utilizing electromagnetic navigation and shape-sensing technology for guidance. The greatest improvement has been the stabilization of the robotic scope in the periphery to allow for accurate sampling. Despite improvements in these platforms, limitations of CT to body divergence continue to impact navigation to the lesion and therefore diagnostic yield of the procedure. Advanced intraprocedural imaging with cone beam CT or augmented fluoroscopy has been a recent focus to improve this area. Further, the adoption of newer sampling tools, such as cryobiopsy, offers the possibility of increased diagnostic yield. SUMMARY The developments in advanced bronchoscopy will impact the role of biopsy in the diagnosis of peripheral pulmonary parenchymal lesions.
Collapse
Affiliation(s)
- Jeffrey Graham
- Interventional Pulmonology, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health, Salt Lake City, Utah
| | - Madeleine Basist
- Interventional Pulmonology, Division of Pulmonary, Critical Care & Sleep Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Laura Frye
- Interventional Pulmonology, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health, Salt Lake City, Utah
| | - Abhinav Agrawal
- Interventional Pulmonology, Division of Pulmonary, Critical Care & Sleep Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Faria Nasim
- Interventional Pulmonology, Pulmonary & Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Ortiz-Jaimes G, Reisenauer J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmat Obs Res 2023; 14:75-94. [PMID: 37694262 PMCID: PMC10492559 DOI: 10.2147/por.s395806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
The approach to peripheral pulmonary lesions (PPL) has been evolving continuously. Advanced bronchoscopic navigational techniques have improved the airway-based approaches to these lesions. Robotic Assisted Bronchoscopy (RAB) can be considered the current pinnacle of this evolution; allowing for a safer approach to sampling lesions previously considered outside of bronchoscopic reach. We present a comprehensive review of the changing epidemiology of lung cancer and the importance of early tissue sampling, the evolution of sampling and navigational bronchoscopic techniques, technical considerations and evidence pertaining to the use of RAB, and adjunct techniques in the diagnosis of lung cancer. Complications and future applications of RAB are also discussed.
Collapse
Affiliation(s)
- Gabriel Ortiz-Jaimes
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janani Reisenauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Jain A, Sarkar A, Husnain SMN, Adkinson BC, Sadoughi A, Sarkar A. Digital Tomosynthesis: Review of Current Literature and Its Impact on Diagnostic Bronchoscopy. Diagnostics (Basel) 2023; 13:2580. [PMID: 37568943 PMCID: PMC10417238 DOI: 10.3390/diagnostics13152580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Bronchoscopy has garnered increased popularity in the biopsy of peripheral lung lesions. The development of navigational guided bronchoscopy systems along with radial endobronchial ultrasound (REBUS) allows clinicians to access and sample peripheral lesions. The development of robotic bronchoscopy improved localization of targets and diagnostic accuracy. Despite such technological advancements, published diagnostic yield remains lower compared to computer tomography (CT)-guided biopsy. The discordance between the real-time location of peripheral lesions and anticipated location from preplanned navigation software is often cited as the main variable impacting accurate biopsies. The utilization of cone beam CT (CBCT) with navigation-based bronchoscopy has been shown to assist with localizing targets in real-time and improving biopsy success. The resources, costs, and radiation associated with CBCT remains a hindrance in its wider adoption. Recently, digital tomosynthesis (DT) platforms have been developed as an alternative for real-time imaging guidance in peripheral lung lesions. In North America, there are several commercial platforms with distinct features and adaptation of DT. Early studies show the potential improvement in peripheral lesion sampling with DT. Despite the results of early observational studies, the true impact of DT-based imaging devices for peripheral lesion sampling cannot be determined without further prospective randomized trials and meta-analyses.
Collapse
Affiliation(s)
- Anant Jain
- Department of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (A.J.); (S.M.N.H.)
| | - Adrish Sarkar
- Department of Radiology, Nassau University Medical Center, East Meadow, NY 11554, USA;
| | - Shaikh Muhammad Noor Husnain
- Department of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (A.J.); (S.M.N.H.)
| | - Brian Cody Adkinson
- Department of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA;
| | - Ali Sadoughi
- Department of Pulmonary Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
| | - Abhishek Sarkar
- Department of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (A.J.); (S.M.N.H.)
| |
Collapse
|