1
|
Makaruse N, Maslin MRD, Shai Campbell Z. Early identification of potential occupational noise-induced hearing loss: a systematic review. Int J Audiol 2025; 64:419-428. [PMID: 39468424 DOI: 10.1080/14992027.2024.2418354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE This systematic review addressed two questions: 1) For which audiometric test frequencies or pure tone averages are hearing threshold levels (HTLs) most susceptible to early occupational noise induced hearing loss (NIHL) before significant damage? 2) Which early flag metric best detects early hearing shifts due to noise for occupational NIHL surveillance? DESIGN Systematic searches were conducted in Ovid MEDLINE(R) and Embase from July 2021 to May 2024. Eligibility was screened by two independent reviewers using Covidence. HTL results were analysed for susceptibility to noise-induced changes, and sensitivity and specificity of early flag metrics were assessed. STUDY SAMPLE Of 175 studies retrieved, 18 met the inclusion criteria. RESULTS Ten studies emphasised the importance of testing at frequencies above 8 kHz, with HTLs at 12, 14, and 16 kHz frequently identified as the most noise susceptible. Conventional frequencies of 3-6 kHz were also noted as susceptible. NIOSH and OSHA metrics had low sensitivity and specificity, but modifications improved their performance to 100% sensitivity and 98% specificity. CONCLUSION The review highlights the need to refine current metrics and explore extended high frequencies for NIHL monitoring. Research is required to determine frequencies for warning metrics and sensitive metrics for early occupational NIHL detection.
Collapse
Affiliation(s)
- Nyasha Makaruse
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, Auckland, New Zealand
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mike R D Maslin
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, Auckland, New Zealand
| | - Ziva Shai Campbell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, Auckland, New Zealand
| |
Collapse
|
2
|
Saunders GH, Walker A, Heal C, Ramdoo K. A Comparison of Hearing Thresholds, and the Resulting Prescribed Gain and Hearing Aid Outputs, Using Gold Standard Audiometry and the TympaHealth Hearing Assessment Tool. Am J Audiol 2024; 33:740-755. [PMID: 38848255 DOI: 10.1044/2024_aja-24-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVE Phone- and tablet-based hearing testing systems are now widely available. Here, we evaluated one such system from TympaHealth by comparing air conduction thresholds and resultant hearing aid targets and output, measured with the TympaHealth system with those measured using standard audiometry. DESIGN The hearing thresholds of 35 adults were measured using standard audiometry and the TympaHealth system. Each set of thresholds was used to generate NAL-NL2 targets and program a hearing aid. The data from each system were compared. RESULTS Bland-Altman analyses showed overall mean differences between thresholds measured with each system to be small, with 85% of TympaHealth thresholds being within ±5 dB of the standard audiometric thresholds, although TympaHealth thresholds were higher (poorer) than the standard audiometric thresholds. The hearing aid targets and gains generated from the standard audiometric thresholds were lower (less amplification) than those generated from the TympaHealth thresholds but again, mean differences at each frequency were small and likely imperceptible. CONCLUSION These findings support the possibility that valid hearing testing can take place outside of a clinical booth using portable systems like that from TympaHealth, opening up the possibility of testing hearing and fitting hearing aids through pharmacies, opticians, and in care homes.
Collapse
Affiliation(s)
- Gabrielle H Saunders
- Manchester Centre for Audiology and Deafness, University of Manchester, United Kingdom
| | | | - Calvin Heal
- Centre for Biostatistics, University of Manchester, United Kingdom
| | | |
Collapse
|
3
|
Schilder AGM, Wolpert S, Saeed S, Middelink LM, Edge ASB, Blackshaw H, Pastiadis K, Bibas AG. A phase I/IIa safety and efficacy trial of intratympanic gamma-secretase inhibitor as a regenerative drug treatment for sensorineural hearing loss. Nat Commun 2024; 15:1896. [PMID: 38429256 PMCID: PMC10907343 DOI: 10.1038/s41467-024-45784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Inhibition of Notch signalling with a gamma-secretase inhibitor (GSI) induces mammalian hair cell regeneration and partial hearing restoration. In this proof-of-concept Phase I/IIa multiple-ascending dose open-label trial (ISRCTN59733689), adults with mild-moderate sensorineural hearing loss received 3 intratympanic injections of GSI LY3056480, in 1 ear over 2 weeks. Phase I primary outcome was safety and tolerability. Phase lla primary outcome was change from baseline to 12 weeks in average pure-tone air conduction threshold across 2,4,8 kHz. Secondary outcomes included this outcome at 6 weeks and change from baseline to 6 and 12 weeks in pure-tone thresholds at individual frequencies, speech reception thresholds (SRTs), Distortion Product Otoacoustic Emissions (DPOAE) amplitudes, Signal to Noise Ratios (SNRs) and distribution of categories normal, present-abnormal, absent and Hearing Handicap Inventory for Adults/Elderly (HHIA/E). In Phase I (N = 15, 1 site) there were no severe nor serious adverse events. In Phase IIa (N = 44, 3 sites) the average pure-tone threshold across 2,4,8 kHz did not change from baseline to 6 and 12 weeks (estimated change -0.87 dB; 95% CI -2.37 to 0.63; P = 0.252 and -0.46 dB; 95% CI -1.94 to 1.03; P = 0.545, respectively), nor did the means of secondary measures. DPOAE amplitudes, SNRs and distribution of categories did not change from baseline to 6 and 12 weeks, nor did SRTs and HHIA/E scores. Intratympanic delivery of LY3056480 is safe and well-tolerated; the trial's primary endpoint was not met.
Collapse
Affiliation(s)
- Anne G M Schilder
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
- Ear Institute, University College London, London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, London, UK
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Shakeel Saeed
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
- Ear Institute, University College London, London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, London, UK
| | | | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, USA
| | - Helen Blackshaw
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
- Ear Institute, University College London, London, UK
| | - Kostas Pastiadis
- 1st Department of Otolaryngology, Hippocration Hospital Athens, National & Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Bibas
- 1st Department of Otolaryngology, Hippocration Hospital Athens, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Kulinski D, Carr W, Garfield BA, Salib J, Dirks C, Sheffield B, Brungart DS. Acute Hearing Deficits associated with Weapons Exposure in Section 734 Blast Overpressure Study (BOS). Mil Med 2023; 188:666-673. [PMID: 37948283 DOI: 10.1093/milmed/usad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION This prospective, multi-site, observational study describes ongoing efforts in support of the Fiscal Year 2018 National Defense Authorization Act (NDAA) Section 734 Blast Overpressure Study (BOS) to identify the acute effects impulse and blast exposure have on hearing abilities of the Warfighter in various military training environments. MATERIALS AND METHODS Hearing thresholds, a binaural tone detection task, and auditory symptoms were collected before and immediately following weapons exposure across nine military training environments from January 2020 to October 2022. An additional 25 non-exposed control participants also completed the behavioral test battery. A boothless audiometer was used to measure hearing ability in the field. Sound level meters were attached on-body to record the exposure environment throughout training. RESULTS Mean threshold change for the blast-exposed group was worse than the control group. Of the 188 blast-exposed participants, 23 experienced a temporary threshold shift (TTS) acutely after exposure. A decrease in binaural tone detection performance and increased symptom severity was found when comparing blast-exposed participants with a TTS versus those without a significant change in hearing. A complex but consistent relationship between measured exposure level (LAeq8hr) and the magnitude of the resulting TTS is suggested in the available data. CONCLUSIONS Recent discussions on Section 734 studies examining the effects of repetitive blast exposure have indicated that hearing-related issues were a critical problem that needed additional research. Study outcomes provide highly repeatable results across various weapons systems with hazardous blast exposure. This standardized set of hearing assessment tools for evaluating acute effects of noise under field conditions has been critically important in improving our understanding of TTS in prospective human subject research.
Collapse
Affiliation(s)
- Devon Kulinski
- National Military Audiology and Speech Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Bradley A Garfield
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jonathan Salib
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Coral Dirks
- National Military Audiology and Speech Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Benjamin Sheffield
- National Military Audiology and Speech Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Hearing Conservation and Readiness Branch, Army Public Health Center, Aberdeen Proving Ground, MD 21010, USA
| | - Douglas S Brungart
- National Military Audiology and Speech Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| |
Collapse
|
5
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Le Prell CG, Clavier OH, Bao J. Noise-induced hearing disorders: Clinical and investigational tools. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:711. [PMID: 36732240 PMCID: PMC9889121 DOI: 10.1121/10.0017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | - Jianxin Bao
- Gateway Biotechnology Inc., St. Louis, Missouri 63132, USA
| |
Collapse
|
7
|
Le Prell CG, Brewer CC, Campbell KCM. The audiogram: Detection of pure-tone stimuli in ototoxicity monitoring and assessments of investigational medicines for the inner ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:470. [PMID: 35931504 PMCID: PMC9288270 DOI: 10.1121/10.0011739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pure-tone thresholds have long served as a gold standard for evaluating hearing sensitivity and documenting hearing changes related to medical treatments, toxic or otherwise hazardous exposures, ear disease, genetic disorders involving the ear, and deficits that develop during aging. Although the use of pure-tone audiometry is basic and standard, interpretation of thresholds obtained at multiple frequencies in both ears over multiple visits can be complex. Significant additional complexity is introduced when audiometric tests are performed within ototoxicity monitoring programs to determine if hearing loss occurs as an adverse reaction to an investigational medication and during the design and conduct of clinical trials for new otoprotective agents for noise and drug-induced hearing loss. Clinical trials using gene therapy or stem cell therapy approaches are emerging as well with audiometric outcome selection further complicated by safety issues associated with biological therapies. This review addresses factors that must be considered, including test-retest variability, significant threshold change definitions, use of ototoxicity grading scales, interpretation of early warning signals, measurement of notching in noise-induced hearing loss, and application of age-based normative data to interpretation of pure-tone thresholds. Specific guidance for clinical trial protocols that will assure rigorous methodological approaches and interpretable audiometric data are provided.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Washington D.C. 20892, USA
| | - Kathleen C M Campbell
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| |
Collapse
|
8
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
9
|
Klamkam P, Pagcharoenpol R, Treesaranuwattana T, Silpsrikul P, Jaruchinda P, Wasuwat P, Suwannahitatorn P. A clinical trial of nicergoline to prevent temporary threshold shift. Laryngoscope Investig Otolaryngol 2022; 7:515-522. [PMID: 35434325 PMCID: PMC9008157 DOI: 10.1002/lio2.746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
Objective To evaluate the effectiveness of nicergoline to prevent temporary threshold shift (TTS) in military personnel. Study Design A randomized control trial. Methods Two hundred and twenty‐four participants were enrolled. Nicergoline 30 mg twice daily intake was prescribed to the study group (n = 119) for 3 weeks. The placebo was prescribed to the control group (n = 105) for 3 weeks, as well. Audiometric thresholds were measured at baseline and within 24 h after the participants attended a 1‐day weapons firing practice. During the firing practice, all participants had to wear foam earplugs. The TTS was assessed by using a variety of published significant threshold shift (STS) definitions. Additionally, the effects of the treatment group on the magnitude of pre‐ to postexposure threshold shifts were estimated. Tinnitus and other adverse effects of the medication were recorded. Results The incidence of STS was 65.4% from the study group and 75% from the control group. The negative STS (thresholds improved) was 68.6% from the study group and 44.7% from the control group. The positive STS (thresholds worsened) from the study group and the control group was 31.4% and 55.3%, respectively. The effect of treatment in participants receiving nicergoline demonstrated significant coefficients (change in dB) in both ears (p = .001). The mean different threshold of participants receiving nicergoline showed negative STS in all tested frequencies without statistical significance. However, the mean different threshold of participants receiving a placebo showed positive STS with statistical significance. Additionally, there were 16 ears detecting a warning sign of permanent hearing loss. These participants from the control group presented a longer duration of tinnitus (p = .042). Moreover, the serious adverse effects of nicergoline were considerably low. Conclusion The study results suggest that nicergoline may attenuate noise‐related TTS and tinnitus, and justify further investigation on the effectiveness of this drug as an otoprotectant. Level of Evidence 2
Collapse
Affiliation(s)
- Pana Klamkam
- Department of Otolaryngology Phramongkutklao Hospital, Royal Thai Amy Bangkok Thailand
| | - Rongrat Pagcharoenpol
- Department of Otolaryngology Phramongkutklao Hospital, Royal Thai Amy Bangkok Thailand
| | | | - Pichayen Silpsrikul
- Medical Battalion, Support Regiment, Marines Division Royal Thai Navy Sattahip Chonburi Thailand
| | - Pariyanan Jaruchinda
- Department of Otolaryngology Phramongkutklao Hospital, Royal Thai Amy Bangkok Thailand
| | - Piyalarp Wasuwat
- Department of Otolaryngology Phramongkutklao Hospital, Royal Thai Amy Bangkok Thailand
| | | |
Collapse
|
10
|
Turay CB, Ozer F, Yildirim T, Erbek S. Evaluation of the possible effect of magnetic resonance imaging noise on peripheral hearing organ with the otoacoustic emission. Am J Otolaryngol 2020; 41:102586. [PMID: 32629148 DOI: 10.1016/j.amjoto.2020.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study is to evaluate the effect of noise produced by magnetic resonance imaging (MRI) device on hearing by using objective and subjective audiological assessments. METHODS A total of 38 patients between the ages of 18 and 50 without hearing loss, and had performed MRI for brain, head, neck or cervical imaging were included in this prospective clinical study. Pure tone audiometry, speech audiometry, high frequency audiometry, transient evoked otoacoustic emissions (TEOAE) and distortion product otoacoustic emission (DPOAE) were performed before and after MRI. RESULTS There was no statistically significant difference in TEOAE, pure tone audiogram, high frequency audiogram and speech audiogram thresholds. In DPOAE, the median value before and after MRI at the frequency of the left ear at 4.0 kHz was 13.6 (8.5-19.9) and 15.7 (8.9-20.7) SNR respectively (p > .05). The median value before MRI at the right ear 4.0 kHz frequency was 14.1 (9.1-20.5) SNR, whereas the median value after MRI was 13.2 (8.8-19.8 SNR (p = 0,03). There was no statistically significant difference in other frequencies in DPOAE. CONCLUSIONS This is the first objective study that examines the MRI noise on speech audiometry and otoacoustic emission together. However, the effect of MRI noise on hearing pathway is still doubt. Based on the difference at 4 kHz frequency on DPOAE; on-earphones may not sufficiently protect the patients from the MRI noise and this issue should deserve further research.
Collapse
|
11
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
12
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss: Translating risk from animal models to real-world environments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3646. [PMID: 31795692 PMCID: PMC7341677 DOI: 10.1121/1.5133385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Noise-induced hearing loss (NIHL) is a common injury for service members and civilians. Effective prevention of NIHL with drug agents would reduce the prevalence of NIHL. There are a host of challenges in translation of investigational new drug agents from animals into human clinical testing, however. Initial articles in this special issue describe common pre-clinical (animal) testing paradigms used to assess potential otoprotective drug agents and design-related factors that impact translation of promising agents into human clinical trials. Additional articles describe populations in which NIHL has a high incidence and factors that affect individual vulnerability. While otoprotective drugs will ultimately be developed for use by specific noise-exposed populations, there has been little effort to develop pre-clinical (animal) models that accurately model exposure hazards across diverse human populations. To facilitate advances in the translational framework for NIHL otoprotection in pre-clinical and clinical testing, the overarching goals of the current series are to (1) review the animal models that have been used, highlighting the relevance to the human populations of interest, (2) provide insight into the populations for whom pharmaceutical interventions might, or might not, be appropriate, and (3) highlight the factors that drive the significant individual variability observed in humans.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio 45226, USA
| |
Collapse
|
13
|
Hecht QA, Hammill TL, Calamia PT, Smalt CJ, Brungart DS. Characterization of acute hearing changes in United States military populations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3839. [PMID: 31795720 DOI: 10.1121/1.5132710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Until recently, most hearing conservation programs, including those in the military, have used permanent shifts in the pure-tone audiometric threshold as the gold standard for measuring hearing impairment in noise-exposed populations. However, recent results from animal studies suggest that high-level noise exposures can cause the permanent destruction of synapses between the inner hair cells and auditory nerve fibers, even in cases where pure-tone audiometric thresholds eventually return to their normal pre-exposure baselines. This has created a dilemma for researchers, who are now increasingly interested in studying the long-term effects that temporary hearing shifts might have on hearing function, but are also concerned about the ethical considerations of exposing human listeners to high levels of noise for research purposes. One method that remains viable to study the effects of high noise exposures on human listeners, or to evaluate the efficacy of interventions designed to prevent noise-related inner ear damage, is to identify individuals in occupations with unavoidable noise exposures and measure hearing before and as soon as possible after exposure. This paper discusses some of the important factors to be considered in studies that attempt to measure acute hearing changes in noise-exposed military populations.
Collapse
Affiliation(s)
- Quintin A Hecht
- Department of Defense Hearing Center of Excellence, 1100 Wilford Hall Loop, Building 4554, Joint Base San Antonio (JBSA), Lackland, Texas 78236, USA
| | - Tanisha L Hammill
- Department of Defense Hearing Center of Excellence, 1100 Wilford Hall Loop, Building 4554, Joint Base San Antonio (JBSA), Lackland, Texas 78236, USA
| | - Paul T Calamia
- Bioengineering Systems and Technologies Group, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02421, USA
| | - Christopher J Smalt
- Bioengineering Systems and Technologies Group, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02421, USA
| | - Douglas S Brungart
- Walter-Reed National Military Medical Center (WRNMMC), Building 19, Room 5600, 4954 North Palmer Road Bethesda, Maryland 20889-5630, USA
| |
Collapse
|
14
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
15
|
Abstract
There is an urgent need for otoprotective drug agents. Prevention of noise-induced hearing loss continues to be a major challenge for military personnel and workers in a variety of industries despite the requirements that at-risk individuals use hearing protection devices such as ear plugs or ear muffs. Drug-induced hearing loss is also a major quality-of-life issue with many patients experiencing clinically significant hearing loss as a side effect of treatment with life-saving drug agents such as cisplatin and aminoglycoside antibiotics. There are no pharmaceutical agents approved by the United States Food and Drug Administration for the purpose of protecting the inner ear against damage, and preventing associated hearing loss (otoprotection). However, a variety of preclinical studies have suggested promise, with some supporting data from clinical trials now being available as well. Additional research within this promising area is urgently needed.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
16
|
In Vivo Electrocochleography in Hybrid Cochlear Implant Users Implicates TMPRSS3 in Spiral Ganglion Function. Sci Rep 2018; 8:14165. [PMID: 30242206 PMCID: PMC6154996 DOI: 10.1038/s41598-018-32630-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
Cochlear implantation, a surgical method to bypass cochlear hair cells and directly stimulate the spiral ganglion, is the standard treatment for severe-to-profound hearing loss. Changes in cochlear implant electrode array design and surgical approach now allow for preservation of acoustic hearing in the implanted ear. Electrocochleography (ECochG) was performed in eight hearing preservation subjects to assess hair cell and neural function and elucidate underlying genetic hearing loss. Three subjects had pathogenic variants in TMPRSS3 and five had pathogenic variants in genes known to affect the cochlear sensory partition. The mechanism by which variants in TMPRSS3 cause genetic hearing loss is unknown. We used a 500-Hz tone burst to record ECochG responses from an intracochlear electrode. Responses consist of a cochlear microphonic (hair cell) and an auditory nerve neurophonic. Cochlear microphonics did not differ between groups. Auditory nerve neurophonics were smaller, on average, in subjects with TMPRSS3 deafness. Results of this proof-of-concept study provide evidence that pathogenic variants in TMPRSS3 may impact function of the spiral ganglion. While ECochG as a clinical and research tool has been around for decades, this study illustrates a new application of ECochG in the study of genetic hearing and deafness in vivo.
Collapse
|
17
|
Teitz T, Fang J, Goktug AN, Bonga JD, Diao S, Hazlitt RA, Iconaru L, Morfouace M, Currier D, Zhou Y, Umans RA, Taylor MR, Cheng C, Min J, Freeman B, Peng J, Roussel MF, Kriwacki R, Guy RK, Chen T, Zuo J. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 2018. [PMID: 29514916 PMCID: PMC5881471 DOI: 10.1084/jem.20172246] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Asli N Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Justine D Bonga
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shiyong Diao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert A Hazlitt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Luigi Iconaru
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marie Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Robyn A Umans
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael R Taylor
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Burgess Freeman
- Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, TN
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
18
|
Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ, Lynch ED, Le Prell CG. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2017; 390:969-979. [PMID: 28716314 DOI: 10.1016/s0140-6736(17)31791-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Noise-induced hearing loss is a leading cause of occupational and recreational injury and disease, and a major determinant of age-related hearing loss. No therapeutic agent has been approved for the prevention or treatment of this disorder. In animal models, glutathione peroxidase 1 (GPx1) activity is reduced after acute noise exposure. Ebselen, a novel GPx1 mimic, has been shown to reduce both temporary and permanent noise-induced hearing loss in preclinical studies. We assessed the safety and efficacy of ebselen for the prevention of noise-induced hearing loss in young adults in a phase 2 clinical trial. METHODS In this single-centre, randomised, double-blind, placebo-controlled phase 2 trial, healthy adults aged 18-31 years were randomly assigned (1:1:1:1) at the University of Florida (Gainsville, FL, USA) to receive ebselen 200 mg, 400 mg, or 600 mg, or placebo orally twice daily for 4 days, beginning 2 days before a calibrated sound challenge (4 h of pre-recorded music delivered by insert earphones). Randomisation was done with an allocation sequence generated by an independent third party. The primary outcome was mean temporary threshold shift (TTS) at 4 kHz measured 15 min after the calibrated sound challenge by pure tone audiometry; a reduction of 50% in an ebselen dose group compared with the placebo group was judged to be clinically relevant. All participants who received the calibrated sound challenge and at least one dose of study drug were included in the efficacy analysis. All randomly assigned patients were included in the safety analysis. This trial is registered with ClinicalTrials.gov, number NCT01444846. FINDINGS Between Jan 11, 2013, and March 24, 2014, 83 participants were enrolled and randomly assigned to receive ebselen 200 mg (n=22), 400 mg (n=20), or 600 mg (n=21), or placebo (n=20). Two participants in the 200 mg ebselen group were discontinued from the study before the calibrated sound challenge because they no longer met the inclusion criteria; these participants were excluded from the efficacy analysis. Mean TTS at 4 kHz was 1·32 dB (SE 0·91) in the 400 mg ebselen group compared with 4·07 dB (0·90) in the placebo group, representing a significant reduction of 68% (difference -2·75 dB, 95% CI -4·54 to -0·97; p=0·0025). Compared with placebo, TTS at 4 kHz was non-significantly reduced by 21% in the 200 mg ebselen group (3·23 dB [SE 0·91] vs 4·07 dB [0·90] in the placebo group; difference -0·84 dB, 95% CI -2·63 to 0·94; p=0·3542) and by 7% in the 600 mg ebselen group (3·81 dB [0·90] vs 4·07 dB [0·90] in the placebo group; difference -0·27, 95% CI -2·03 to 1·50; p=0·7659). Ebselen treatment was well tolerated across all doses and no significant differences were seen in any haematological, serum chemistry, or radiological assessments between the ebselen groups and the placebo group. INTERPRETATION Treatment with ebselen was safe and effective at a dose of 400 mg twice daily in preventing a noise-induced TTS. These data lend support to a role of GPx1 activity in acute noise-induced hearing loss. FUNDING Sound Pharmaceuticals.
Collapse
Affiliation(s)
| | - Edward Lobarinas
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Christopher Spankovich
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA; Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Scott K Griffiths
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | | | | | - Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
19
|
|