1
|
Chen M, Fan S, Mao J, Huang L, Tursun N, Zhang C, Li W, Li S. Reversing Cochlear Nucleus Maladaptive Plasticity via Customized Extracochlear Stimulation: A New Approach for Tinnitus Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412349. [PMID: 39807573 PMCID: PMC11884617 DOI: 10.1002/advs.202412349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks. Additionally, a customized extracochlear ES delivered by a newly designed extracochlear electrode array to guinea pigs with salicylate-induced tinnitus also reversed the aforementioned maladaptive plasticity and alleviated tinnitus without causing additional cochlear damage or hearing loss. These findings suggest that CI-delivered ES may alleviate tinnitus by reversing maladaptive CN plasticity. Additionally, the extracochlear ES strategy offers a promising tinnitus treatment with minimal risk to hearing.
Collapse
Affiliation(s)
- Min Chen
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Shuwen Fan
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Jiabao Mao
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Linhan Huang
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Nafisa Tursun
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Chen Zhang
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Wen Li
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| | - Shufeng Li
- ENT Institute and Department of OtolaryngologyEye & ENT Hospital of Fudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing Medicine ResearchFudan UniversityShanghai200031China
| |
Collapse
|
2
|
Alvarado JC, Fuentes-Santamaría V, Benítez-Maicán Z, Díaz García CM, Gabaldón Ull MC, Juiz JM. An electrophysiological early marker of age-related hearing loss in the Wistar rat model. Heliyon 2024; 10:e40314. [PMID: 39584077 PMCID: PMC11585878 DOI: 10.1016/j.heliyon.2024.e40314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
The goal of the present study was to determine, through a detailed study of the auditory brainstem response (ABR) waves, the possible existence of an early functional marker for the onset of presbycusis in an animal model. Toward this goal, Wistar rats were divided into four age groups: 3-month-old (3M, n = 6, control), 9-month-old (9M, n = 6), 14-month-old (14M, n = 6), and 20-month-old (20M, n = 6). ABR recordings were performed at 0.5, 1, 2, 4, 8, 16, and 32 kHz. The novel result reported here is that wave amplitudes, particularly wave II, were significantly diminished in the 9M group, even though there was no evidence of significant age-related threshold shift at that age. A significant increase in auditory thresholds with age was first detected at 14M, which further progressed at 20M, confirming our previous findings. These findings suggest that measurable alterations in ABR waves may precede age-related threshold shift and could serve as early markers to detect the onset of age-related hearing loss. Upon translation to humans, they could be used to implement early objective diagnosis, crucial to prevent or mitigate the negative consequences of presbycusis, a common, progressive, and irreversible neurodegenerative age-related disorder. This may allow, for instance, a better preservation of residual hearing, thus delaying the progression of the disease and minimizing the impact of hearing loss, ultimately improving the quality of life for those who suffer from this neurodegenerative condition.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Facultad de Medicina e Instituto de Biomedicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | - Zaskya Benítez-Maicán
- Facultad de Medicina e Instituto de Biomedicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | - María Cruz Gabaldón Ull
- Facultad de Medicina e Instituto de Biomedicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M. Juiz
- Facultad de Medicina e Instituto de Biomedicina, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
3
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Shen WD, Yang S, Wang F. Transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus. Exp Biol Med (Maywood) 2024; 249:10057. [PMID: 38562529 PMCID: PMC10984379 DOI: 10.3389/ebm.2024.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Tinnitus is a disturbing condition defined as the occurrence of acoustic hallucinations with no actual sound. Although the mechanisms underlying tinnitus have been explored extensively, the pathophysiology of the disease is not completely understood. Moreover, genes and potential treatment targets related to auditory hallucinations remain unknown. In this study, we examined transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus in rats by performing RNA sequencing and validated differentially expressed genes via quantitative polymerase chain reaction analysis. The rat model of tinnitus was established by analyzing startle behavior based on gap-pre-pulse inhibition of acoustic startles. We identified 87 differently expressed genes, of which 40 were upregulated and 47 were downregulated. Pathway-enrichment analysis revealed that the differentially enriched genes in the tinnitus group were associated with pathway terms, such as coronavirus disease COVID-19, neuroactive ligand-receptor interaction. Protein-protein-interaction networks were established, and two hub genes (Rpl7a and AC136661.1) were identified among the selected genes. Further studies focusing on targeting and modulating these genes are required for developing potential treatments for noise-induced tinnitus in patients.
Collapse
Affiliation(s)
- Peng Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Xinmiao Xue
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Chi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Hanwen Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Zhiwei Ding
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Yuke Jiang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Wei-Dong Shen
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Shiming Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Fangyuan Wang
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| |
Collapse
|
4
|
Yuksel B, Dogan M, Boyacioglu O, Sahin M, Orenay-Boyacioglu S. Association Between Chronic Tinnitus and Brain-Derived Neurotrophic Factor Antisense RNA Polymorphisms Linked to the Val66Met Polymorphism in BDNF. Gene 2023; 875:147507. [PMID: 37230202 DOI: 10.1016/j.gene.2023.147507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Tinnitus is the sound heard in the ear or head of a person in the absence of external stimuli. Its etiopathogenesis is still not fully understood and the etiological causes responsible for tinnitus are quite variable. Brain-derived neurotrophic factor (BDNF) is one of the key neurotrophic factors in the growth, differentiation, and survival of neurons and in the developing auditory pathway, including the inner ear sensory epithelium. The regulation of BDNF gene is known to be managed by BDNF antisense (BDNF-AS) gene. BDNF-AS is located downstream of the BDNF gene and transcribes a long non-coding RNA. Inhibition of BDNF-AS upregulates BDNF mRNA, which increases protein levels and stimulates neuronal development and differentiation. Thus, BDNF and BDNF-AS both may play roles in the auditory pathway. Polymorphisms in both genes may have impact on hearing performance. A link was suggested between tinnitus and BDNF Val66Met polymorphism. However, there is no study questioning the relationship of tinnitus with BDNF-AS polymorphisms linked with BDNF Val66Met polymorphism. Therefore, this study aimed to scrutinize the role of BDNF-AS polymorphisms showing linkage with the BDNF Val66Met polymorphism in the course of tinnitus pathophysiology. Six BDNF-AS polymorphisms were analyzed on the tinnitus patients (n=85) and the control subjects (n=60) by Fluidigm Real-Time PCR using the Fluidigm Biomark microfluidic platform. When BDNF-AS polymorphisms were compared between the groups in terms of genotype and gender distribution, statistically significant differences were detected in rs925946, rs1519480, and rs10767658, polymorphisms (p<0.05). When the polymorphisms were compared by the duration of tinnitus, significant differences were found in rs925946, rs1488830, rs1519480, and rs10767658 polymorphisms (p<0.05). According to genetic inheritance model analysis, 2.33 and 1.53-fold risks were found for the rs10767658 polymorphism in the recessive and the additive models, respectively. For the rs1519480 polymorphism, a 2.25 fold risk was observed in the additive model. For the rs925946 polymorphism, 2.44 fold protective effect in dominant model, and 0.62 fold risk was found in the additive model. In conclusion, four of the polymorphisms in BDNF-AS gene (rs955946, rs1488830, rs1519480, and rs10767658) are potential gene loci that may play a role in the auditory pathway and affect auditory performance.
Collapse
Affiliation(s)
- Buse Yuksel
- Department of Molecular Biotechnology, Institute of Health Sciences, Aydın Adnan Menderes University, Aydın 09010, Turkey
| | - Murat Dogan
- Department of Otolaryngology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın 09010, Turkey; Department of Otolaryngology, Medicana International Istanbul-Beylikduzu, Istanbul 34520, Turkey
| | - Olcay Boyacioglu
- Faculty of Engineering, Aydın Adnan Menderes University, Aydın 09010, Turkey; Department of Cancer Biology, Faculty of Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Mustafa Sahin
- Department of Otolaryngology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın 09010, Turkey
| | - Seda Orenay-Boyacioglu
- Department of Medical Genetics, Faculty of Medicine, Aydın Adnan Menderes University, Aydın 09010, Turkey.
| |
Collapse
|
5
|
Protective Effect of Resveratrol in an Experimental Model of Salicylate-Induced Tinnitus. Int J Mol Sci 2022; 23:ijms232214183. [PMID: 36430660 PMCID: PMC9692321 DOI: 10.3390/ijms232214183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
To date, the effect of resveratrol on tinnitus has not been reported. The attenuative effects of resveratrol (RSV) on a salicylate-induced tinnitus model were evaluated by in vitro and in vivo experiments. The gene expression of the activity-regulated cytoskeleton-associated protein (ARC), tumor necrosis factor-alpha (TNFα), and NMDA receptor subunit 2B (NR2B) in SH-SY5Y cells was examined using qPCR. Phosphorylated cAMP response element-binding protein (p-CREB), apoptosis markers, and reactive oxygen species (ROS) were evaluated by in vitro experiments. The in vivo experiment evaluated the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and auditory brainstem response (ABR) level. The NR2B expression in the auditory cortex (AC) was determined by immunohistochemistry. RSV significantly reduced the salicylate-induced expression of NR2B, ARC, and TNFα in neuronal cells; the GPIAS and ABR thresholds altered by salicylate in rats were recovered close to their normal range. RSV also reduced the salicylate-induced NR2B overexpression of the AC. These results confirmed that resveratrol exerted an attenuative effect on salicylate-induced tinnitus and may have a therapeutic potential.
Collapse
|
6
|
Song A, Cho GW, Vijayakumar KA, Moon C, Ang MJ, Kim J, Park I, Jang CH. Neuroprotective Effect of Valproic Acid on Salicylate-Induced Tinnitus. Int J Mol Sci 2021; 23:ijms23010023. [PMID: 35008469 PMCID: PMC8744959 DOI: 10.3390/ijms23010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
High-dose salicylate induces temporary moderate hearing loss and the perception of a high-pitched tinnitus in humans and animals. Previous studies demonstrated that high doses of salicylate increase N-methyl-d-aspartate (NMDA) receptor levels, resulting in a rise in Ca2+ influx and induction of excitotoxicity. Glutamate excitotoxicity is associated with failure in the maintenance of calcium homeostasis, mitochondrial dysfunction, and production of reactive oxygen species (ROS). Valproic acid (VPA) is widely used for the management of bipolar disorder, epilepsy, and migraine headaches, and is known to regulate NMDA receptor activity. In this study, we examined the beneficial effects of VPA in a salicylate-induced tinnitus model in vitro and in vivo. Cells were pretreated with VPA followed by salicylate treatment. The expression levels of NMDA receptor subunit NR2B, phosphorylated cAMP response element-binding protein—an apoptosis marker, and intracellular levels of ROS were measured using several biochemical techniques. We observed increased expression of NR2B and its related genes TNFα and ARC, increased intracellular ROS levels, and induced expression of cleaved caspase-3. These salicylate-induced changes were attenuated in the neuronal cell line SH-SY5Y and rat cortical neurons after VPA pretreatment. Together, these results provide evidence of the beneficial effects of VPA in a salicylate-induced temporary hearing loss and tinnitus model.
Collapse
Affiliation(s)
- Anji Song
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (A.S.); (G.-W.C.); (K.A.V.)
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (A.S.); (G.-W.C.); (K.A.V.)
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Karthikeyan A. Vijayakumar
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (A.S.); (G.-W.C.); (K.A.V.)
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (C.M.); (C.H.J.); Tel.: +82-62-220-6774 (C.H.J.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea;
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Ilyong Park
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, Korea
- Correspondence: (C.M.); (C.H.J.); Tel.: +82-62-220-6774 (C.H.J.)
| |
Collapse
|
7
|
Li ZC, Fang BX, Yuan LX, Zheng K, Wu SX, Zhong N, Zeng XL. Analysis of Studies in Tinnitus-Related Gene Research. Noise Health 2021; 23:95-107. [PMID: 34975125 PMCID: PMC8772442 DOI: 10.4103/nah.nah_57_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective Summarize and analyze the current research results of tinnitus-related genes, explore the potential links between the results of each study, and provide reference for subsequent studies. Methods Collect and sort out the research literature related to tinnitus genes included in PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang Data Knowledge Service Platform before December 31, 2019. Then the relevant contents of the literature were sorted out and summarized. Results Fifty-one articles were finally selected for analysis: 31 articles (60.8%) were classified as researches on animal models of tinnitus, and 20 (39.2%) as researches on tinnitus patients. Existing studies have shown that genes related to oxidative stress, inflammatory response, nerve excitation/inhibition, and nerve growth are differentially expressed in tinnitus patients or animal models, and have presented the potential links between genes or proteins in the occurrence and development of tinnitus. Conclusion The research on tinnitus-related genes is still in the exploratory stage, and further high-quality research evidence is needed.
Collapse
Affiliation(s)
- Zhi-Cheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bi-Xing Fang
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Lian-Xiong Yuan
- Department of Science and Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Xin Wu
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nanbert Zhong
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, USA
| | - Xiang-Li Zeng
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Boroujeni NB, Ashkezari MD, Seifati SM. The rs6265 polymorphism might not affect the secretion of BDNF protein directedly. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Chou LY, Chao YM, Peng YC, Lin HC, Wu YL. Glucosamine Enhancement of BDNF Expression and Animal Cognitive Function. Molecules 2020; 25:molecules25163667. [PMID: 32806562 PMCID: PMC7465318 DOI: 10.3390/molecules25163667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important factor for memory consolidation and cognitive function. Protein kinase A (PKA) signaling interacts significantly with BDNF-provoked downstream signaling. Glucosamine (GLN), a common dietary supplement, has been demonstrated to perform a variety of beneficial physiological functions. In the current study, an in vivo model of 7-week-old C57BL/6 mice receiving daily intraperitoneal injection of GLN (0, 3, 10 and 30 mg/animal) was subjected to the novel object recognition test in order to determine cognitive performance. GLN significantly increased cognitive function. In the hippocampus GLN elevated tissue cAMP concentrations and CREB phosphorylation, and upregulated the expression of BDNF, CREB5 and the BDNF receptor TrkB, but it reduced PDE4B expression. With the in vitro model in the HT22 hippocampal cell line, GLN exposure significantly increased protein and mRNA levels of BDNF and CREB5 and induced cAMP responsive element (CRE) reporter activity; the GLN-mediated BDNF expression and CRE reporter induction were suppressed by PKA inhibitor H89. Our current findings suggest that GLN can exert a cognition-enhancing function and this may act at least in part by upregulating the BDNF levels via a cAMP/PKA/CREB-dependent pathway.
Collapse
Affiliation(s)
- Lien-Yu Chou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (L.-Y.C.), (Y.-M.C.); (H.-C.L.)
| | - Yu-Ming Chao
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (L.-Y.C.), (Y.-M.C.); (H.-C.L.)
| | - Yen-Chun Peng
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Hui-Ching Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (L.-Y.C.), (Y.-M.C.); (H.-C.L.)
| | - Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (L.-Y.C.), (Y.-M.C.); (H.-C.L.)
- Correspondence: ; Tel.: +886-2-2826-7081; Fax: +886-2-2826-4049
| |
Collapse
|
10
|
Orenay-Boyacioglu S, Caliskan M, Boyacioglu O, Coskunoglu A, Bozkurt G, Cam FS. Chronic tinnitus and BDNF/GDNF CpG promoter methylations: a case-control study. Mol Biol Rep 2019; 46:3929-3936. [PMID: 31041673 DOI: 10.1007/s11033-019-04837-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic factor (GDNF) are neurotrophic factors that play key roles in the auditory pathway. While the relationship between serum levels and polymorphisms of BDNF/GDNF and chronic tinnitus is emphasized in the literature, there is no study showing the link between the promoter methylations of these genes and tinnitus. For this purpose, the relationship between chronic tinnitus and peripheral blood derived BDNF/GDNF promoter methylations was investigated to identify their role in the pathophysiology of tinnitus. In this case-control study, we examined the possible effects of BDNF/GDNF methylations in the blood samples of patients with tinnitus complaints for more than 3 months. Sixty tinnitus subjects between the ages of 18-55 and 50 healthy control subjects in the same age group who were free of any otorhinolaryngology and systemic disease were selected for examination. Methylation of total 12 CpG sites in BDNF and GDNF promoter regions were determined by the bisulfite-pyrosequencing method. Statistically significant differences were detected between BDNF CpG6 and GDNF CpG3-5-6 methylation ratios in the comparison of control group and the chronic tinnitus patients (P = 0.002, 0.0005, 0.00003, and 0.0029, respectively). To our knowledge, this is the first study in the literature investigating the relationship between chronic tinnitus and peripheral blood derived BDNF/GDNF promoter methylations. It is believed that the current results might be supported by investigating the relationships between BDNF/GDNF methylations and genotypes in future research using higher sample sizes.
Collapse
Affiliation(s)
- Seda Orenay-Boyacioglu
- Department of Medical Genetics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| | - Metin Caliskan
- Department of Medical Genetics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Olcay Boyacioglu
- Faculty of Engineering, Aydin Adnan Menderes University, Aydin, Turkey
| | - Aysun Coskunoglu
- Department of Medical Genetics, State Hospital of Sivas, Sivas, Turkey
| | - Gokay Bozkurt
- Department of Medical Genetics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - F Sirri Cam
- Department of Medical Genetics, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
11
|
|
12
|
Wu C, Wu X, Yi B, Cui M, Wang X, Wang Q, Wu H, Huang Z. Changes in GABA and glutamate receptors on auditory cortical excitatory neurons in a rat model of salicylate-induced tinnitus. Am J Transl Res 2018; 10:3941-3955. [PMID: 30662641 PMCID: PMC6325520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Tinnitus is associated with neural hyperactivity, which is regulated by neuronal plasticity in the auditory central system, especially the auditory cortex (AC). Excitatory neurons constitute approximately 70-85% of the total populations of neuronal cells. However, few reports have focused on the AMPA receptor (AMPAR) and the GABAA receptor (GABAAR) on the excitatory neuron in animal model of tinnitus. In this study, we gave rats a single or long-term of salicylate administrations. The tinnitus-like behavior was assessed by combination of the gap prepulse inhibition of acoustic startle (GPIAS) and the pre-pulse inhibition (PPI) tests. Using immunofluorescent staining, we examined whether the AMPAR and the GABAAR on the calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) -labeled excitatory neurons in the auditory cortex underwent changes following salicylate treatment. The rats with 14 days of salicylate administration showed evidence of experiencing tinnitus, while the rats receiving a single dose of salicylate manifested no tinnitus-like behavior. Furthermore, the AMPAR and GABAAR responded in a homeostatic manner after a single dose of salicylate while those showing in a Hebbian way after long-term salicylate administration. Thus, the different patterns of plasticity change in cortical excitatory neurons might affect the generating of salicylate-induced tinnitus.
Collapse
Affiliation(s)
- Cong Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Xu Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Bin Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Mengchen Cui
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Xueling Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Qixuan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Zhiwu Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Laboratory of Auditory Neuroscience, Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| |
Collapse
|