1
|
Zajdel N, Rosiak O, Pietrzak N, Skalski M, Konopka W. Retrospective Analysis of Hearing Outcomes of Cochlear Implantation in Patients with Deafness Due to Congenital CMV Infection. J Clin Med 2025; 14:2575. [PMID: 40283405 PMCID: PMC12028072 DOI: 10.3390/jcm14082575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Cytomegalovirus (CMV) infection in pregnant women is one of the most common causes of congenital infection in children. It is often asymptomatic but can lead to serious complications, including progressive sensorineural hearing loss. Profound hearing loss is an indication for cochlear implantation (CI). Electrode impedance and neural response telemetry (NRT) thresholds can be measured to confirm correct electrode placement and speech processor programming. Background/Objectives: The aim of the study is to evaluate the hearing outcome of children with profound sensorineural hearing loss or deafness due to cCMV infection after CI compared to a control group of children born with other causes of congenital hearing loss and to identify prognostic factors predicting the outcome of patients with hearing loss due to cCMV infection after CI. Methods: A retrospective study was conducted in patients implanted between 2016 and 2023 at the Department of Otolaryngology of the Institute of the Polish Mother's Memorial Hospital Research Institute in Łódź. Pre- and postoperative hearing levels, electrode impedance and neural response telemetry (NRT) thresholds were compared. The degree of pre-implantation hearing loss was assessed by the level of the recorded V-wave in the ABR test. Post-implantation hearing assessment was based on the last available free-field tonal audiometry measurement. Impedance measurements were included: intraoperative, 1, 6, 12 months after CI, respectively, and NRT thresholds. Results: The final analysis included 84 patients with profound sensorineural hearing loss and complete audiological follow-up data: 13 patients with congenital CMV (cCMV) infection and 71 patients with other causes of deafnes. The analysis included 175 implanted ears: 17 in the CMV group and 158 in the control group. The age at implantation ranged from 1 to 11 years in the CMV and from 1 to 13 years in the control group. Mean preoperative hearing thresholds were 94.54 dB in the CMV group and 97.04 dB in the control group. At the most recent postoperative evaluation, mean thresholds improved to 33.83 dB and 36.42 dB, respectively. No statistically significant differences were observed between the groups. Mean intraoperative NRT values were 79.74 in the CMV group and 86.90 in the non-CMV group. Final NRT values were 129.77 and 130.76, respectively. Mean impedance values measured intraoperatively and at 1, 6 and 12 months postoperatively were 11.09 kOhm, 13.40 kOhm, 8.35 kOhm and 8.25 kOhm in the CMV group; and 12.28 kOhm, 14.06 kOhm, 9.60 kOhm and 8.00 kOhm in the control group, respectively. Conclusions: CI in children with deafness caused by cCMV infection is an effective treatment option. Initial electrical impedance values of the electrodes increase after implant activation and decrease in subsequent months of follow-up, suggesting the absence of active adhesion processes in the cochlea.
Collapse
Affiliation(s)
- Natalia Zajdel
- Department of Otolaryngology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (O.R.); (N.P.); (M.S.); (W.K.)
| | | | | | | | | |
Collapse
|
2
|
Mao J, Huang L, Chi Z, Chen M, Li W, Li S. Impact of cochlear detailed morphology on insertion results and intracochlear trauma of a slim pre-curved electrode array: a micro-CT study. Eur Arch Otorhinolaryngol 2025; 282:1769-1781. [PMID: 39488599 DOI: 10.1007/s00405-024-09058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE This study aimed to evaluate the impact of detailed cochlear dimensions, assessed using micro-CT (µCT) imaging, on insertion outcomes and associated trauma with a new slim, precurved electrode array. MATERIALS AND METHODS Eleven temporal bone specimens underwent implantation of a 22-electrode slim precurved array via the round window. High-resolution µCT scans post-implantation enabled visualization of cochlear structures and electrode positioning. Combination with subsequent scans taken after electrodes removal, we analyzed angular insertion depth (AID), insertion length, number of electrodes inserted, cochlear dimensions (specifically cochlear duct length (CDL), basal turn diameter, scala tympani dimension), and intracochlear trauma of fine structures. Statistical analyses were performed to correlate cochlear detailed dimensions and morphology with insertion outcomes and trauma. RESULTS The mean AID was 351.82°, and the mean insertion length was 21.07 mm. CDL showed positive correlations with AID and insertion length. Basal turn diameter (value B) positively correlated with AID and insertion length, unlike value A. Middle-basal turn (M/B) relationships (angle and height) significantly influenced insertion depth. The cochleae with smaller M/B heights and specific angles were more susceptible to insertion trauma. Larger basal turn diameters correlated with increased trauma and electrode translocation into the scala vestibuli. CONCLUSION This study highlights the importance of precise cochlear measurements in predicting and optimizing cochlear implant outcomes. Specific cochlear dimensions and anatomical shapes were identified as critical factors affecting insertion depth, trauma risk, and electrode positioning. Utilizing micro-CT provided detailed insights into cochlear anatomy and insertion outcomes, offering valuable data for advancing cochlear implant technology and surgical practices.
Collapse
Affiliation(s)
- Jiabao Mao
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, 20031, China
- NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 20031, China
| | - Linhan Huang
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, 20031, China
- NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 20031, China
| | - Zhangcai Chi
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, 20031, China
- NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 20031, China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, 20031, China
- NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 20031, China
| | - Wen Li
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, 20031, China
- NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 20031, China
| | - Shufeng Li
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, 20031, China.
- NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 20031, China.
| |
Collapse
|
3
|
Tsuji RK, Hamerschmidt R, Lavinsky J, Felix F, Silva VAR. Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence. Braz J Otorhinolaryngol 2025; 91:101512. [PMID: 39442262 PMCID: PMC11539123 DOI: 10.1016/j.bjorl.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To make evidence-based recommendations for the indications and complications of Cochlear Implant (CI) surgery in adults and children. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on cochlear implantation were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The topics were divided into 2 parts: (1) Evaluation of candidate patients and indications for CI surgery; (2) CI surgery - techniques and complications. CONCLUSIONS CI is a safe device for auditory rehabilitation of patients with severe-to-profound hearing loss. In recent years, indications for unilateral hearing loss and vestibular schwannoma have been expanded, with encouraging results. However, for a successful surgery, commitment of family members and patients in the hearing rehabilitation process is essential.
Collapse
Affiliation(s)
- Robinson Koji Tsuji
- Universidade de São Paulo (USP), Faculdade de Medicina, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ, Brazil
| | - Vagner Antonio Rodrigues Silva
- Universidade de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Asfour L, Risi F, Treaba C, Kirk J, Roland Thomas J. Evaluation of a Slim Modiolar Electrode Array: A Temporal Bone Study. Otol Neurotol 2024; 45:870-877. [PMID: 39142309 DOI: 10.1097/mao.0000000000004253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
HYPOTHESIS Evaluation of the Slim Modiolar (SM) electrode in temporal bones (TB) will elucidate the electrode's insertion outcomes. BACKGROUND The SM electrode was designed for atraumatic insertion into the scala tympani, for ideal perimodiolar positioning and with a smaller caliber to minimize interference with cochlear biological processes. METHODS The SM electrode was inserted into TBs via a cochleostomy. First, the axial force of insertion was measured. Next, TBs were inserted under fluoroscopy to study insertion dynamics, followed by histologic evaluation of electrode placement and cochlear trauma. A subset of TBs were inserted with the Contour Advance (CA) electrode for comparison. RESULTS Sixteen of 22 insertions performed to measure the axial force of insertion had flat or near zero insertion force profiles. Six insertions had increased insertion forces, which were attributed to improper sheath depth before electrode insertion. Under real-time fluoroscopy, 23 of 25 TBs had uneventful insertion and good perimodiolar placement. There was 1 scala vestibuli insertion due to suboptimal cochleostomy position and 1 tip roll over related to premature electrode deployment. When compared with the CA electrode, 14 of 15 insertions with the SM electrode resulted in a more perimodiolar electrode position. No evidence of trauma was found in histologic evaluation of the 24 TBs with scala tympani insertions. CONCLUSION TB evaluation revealed that the SM electrode exerts minimal insertion forces on cochlear structures, produces no histologic evidence of trauma, and reliably assumes the perimodiolar position. Nonstandard cochleostomy location, improper sheath insertion depth, or premature deployment of the electrode may lead to suboptimal outcomes.
Collapse
Affiliation(s)
- Leena Asfour
- Department of Otolaryngology, New York University School of Medicine, New York, U.S.A
| | | | | | | | - J Roland Thomas
- Department of Otolaryngology, New York University School of Medicine, New York, U.S.A
| |
Collapse
|
5
|
Lee AY, Lee DY, Saunders JE. Preoperative Imaging in Cochlear Implants. Otol Neurotol 2024; 45:398-403. [PMID: 38478408 DOI: 10.1097/mao.0000000000004157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To determine the utility of computed tomography (CT) and magnetic resonance imaging (MRI) in cochlear implant candidates. STUDY DESIGN Retrospective case review. SETTING Tertiary referral hospital. PATIENTS A total of 207 cochlear implanted patients with CT and/or MRI. INTERVENTIONS N/A. MAIN OUTCOME MEASURES Age versus abnormal radiologic findings, imaging abnormality versus postoperative outcomes, postoperative outcomes versus electrode design, Cambridge Cochlear Implant Protocol (CCIP) status for imaging abnormalities, sensitivity and specificity of CT and MRI for round-window/cochlear occlusion, and MRI for incomplete partitions. RESULTS A total of 207 patients with CT, MRI, or both were reviewed retrospectively. Less than half (15.5%) of CT scans had findings that might affect surgical intervention compared with 5.9% of MRI. No significant difference was found between children and adults for relevant imaging abnormalities (grade 4 or higher) with either CT (p = 0.931) or MRI (p = 0.606). CCIP status correlated with cochlear abnormalities (p = 0.040); however, only 46.2% of radiographic abnormalities on CT would be identified by these criteria. For detecting cochlear occlusion requiring surgical intervention, the sensitivity and specificity for CT were 40% (4 of 10; 95% confidence interval [CI], 12.16-73.76) and 95.73% (95% CI, 91.40-98.27), respectively. For MRI, the sensitivity and specificity were 33.33% (1 of 3; 95% CI, 0.84-90.57) and 96.97% (63 of 65; 95% CI, 89.32-99.63), respectively. There was no difference for postoperative AzBio scores for higher-grade imaging abnormalities (p = 0.6012) or for electrode designs (p = 0.3699). CONCLUSIONS Significant radiographic abnormalities were relatively uncommon in cochlear implant patients on either CT or MRI at our single-center institution. If present, abnormal imaging findings rarely translated to management changes. CCIP status does not reliably predict which patients are likely to have abnormalities. Both MRI and CT have low sensitivity for round-window or cochlear occlusion, but detection likely leads to changes in surgical management.
Collapse
Affiliation(s)
- Andrew Y Lee
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Diana Y Lee
- New York University Langone Health, Towson, Maryland
| | | |
Collapse
|
6
|
Collins A, Foghsgaard S, Druce E, Margani V, Mejia O, O'Leary S. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants. Otol Neurotol 2024; 45:238-244. [PMID: 38238914 DOI: 10.1097/mao.0000000000004080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND The shape and position of cochlear implant electrodes could potentially influence speech perception, as this determines the proximity of implant electrodes to the spiral ganglion. However, the literature to date reveals no consistent association between speech perception and either the proximity of electrode to the medial cochlear wall or the depth of insertion. These relationships were explored in a group of implant recipients receiving the same precurved electrode. METHODS This was a retrospective study of adults who underwent cochlear implantation with Cochlear Ltd.'s Slim Perimodiolar electrode at the Royal Victorian Eye and Ear Hospital between 2015 and 2018 (n = 52). Postoperative images were obtained using cone beam computed tomography (CBCT) and analyzed by multi-planar reconstruction to identify the position of the electrode contacts within the cochlea, including estimates of the proximity of the electrodes to the medial cochlear wall or modiolus and the angular depth of insertion. Consonant-vowel-consonant (CVC) monosyllabic phonemes were determined preoperatively, and at 3 and 12 months postoperatively. Electrically evoked compound action potential (ECAP) thresholds and impedance were measured from the implant array immediately after implantation. The relationships between electrode position and speech perception, electrode impedance, and ECAP threshold were an analyzed by Pearson correlation. RESULTS Age had a negative impact on speech perception at 3 months but not 12 months. None of the electrode-wide measures of proximity between electrode contacts and the modiolus, nor measures of proximity to the medial cochlear wall, nor the angular depth of insertion of the most apical electrode correlated with speech perception. However, there was a moderate correlation between speech perception and the position of the most basal electrode contacts; poorer speech perception was associated with a greater distance to the modiolus. ECAP thresholds were inversely related to the distance between electrode contacts and the modiolus, but there was no clear association between this distance and impedance. CONCLUSIONS Speech perception was significantly affected by the proximity of the most basal electrodes to the modiolus, suggesting that positioning of these electrodes may be important for optimizing speech perception. ECAP thresholds might provide an indication of this proximity, allowing for its optimization during surgery.
Collapse
Affiliation(s)
- Aaron Collins
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| | - Søren Foghsgaard
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Edgar Druce
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| | - Valerio Margani
- Department of Neuroscience, Mental Health, and Sense Organs (NEMOS), Sant' Andrea University Hospital, Sapienza University, Rome, Italy
| | - Olivia Mejia
- sENTro Head and Neck Clinic, Manila, Philippines
| | | |
Collapse
|
7
|
Fan X, Yang T, Fan Y, Song W, Gu W, Lu X, Chen Y, Chen X. Hearing outcomes following cochlear implantation with anatomic or default frequency mapping in postlingual deafness adults. Eur Arch Otorhinolaryngol 2024; 281:719-729. [PMID: 37548704 DOI: 10.1007/s00405-023-08151-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE The aim of this study was to compare the outcomes of different mapping procedures based on anatomic or default frequency distribution in postlingual deafness adults who underwent cochlear implantation (CI). METHODS Forty-eight adults with postlingual deafness who underwent CI (MED-EL) from January 2021 to May 2022 in our hospital were prospectively recruited. The participants were randomly assigned to two groups (the anatomic group and the default group). Postoperative computerized tomography (CT) scans were evaluated with Otoplan® to determine the angular insertion depth (AID) and the specific locations of the intracochlear electrodes. Anatomic maps were imported into MAESTRO 9.0 software (MED-EL) for anatomy-based fitting for anatomic group, while default mapping program was set up for the default group. Hearing thresholds, Speech Recognition Scores (SRS), and subjects' auditory and musical abilities were evaluated 1 year after using the CI. Differences were determined in two groups using Stata statistical software, with significance defined as p < 0.05. RESULTS SRS under noisy conditions was significantly greater for anatomic group than the default group (p = 0.02). Under quiet conditions, however, mean hearing thresholds (0.5, 1, 2, and 4 kHz) and SRS did not differ significantly between the two groups (p = 0.07). Modified questionnaires showed that auditory (p = 0.02) and musical (p = 0.01) quality were significantly better following the anatomic mapping than the default procedure. CONCLUSION CI program based on the anatomic distribution may bring better SRS under noise conditions as well as better auditory and musical qualities than based on the default frequency distribution.
Collapse
Affiliation(s)
- Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Wenjie Song
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Wei Gu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Xiaoping Lu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
8
|
Pai I, Connor S, Komninos C, Ourselin S, Bergeles C. The impact of the size and angle of the cochlear basal turn on translocation of a pre-curved mid-scala cochlear implant electrode. Sci Rep 2024; 14:1024. [PMID: 38200135 PMCID: PMC10781700 DOI: 10.1038/s41598-023-47133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Scalar translocation is a severe form of intra-cochlear trauma during cochlear implant (CI) electrode insertion. This study explored the hypothesis that the dimensions of the cochlear basal turn and orientation of its inferior segment relative to surgically relevant anatomical structures influence the scalar translocation rates of a pre-curved CI electrode. In a cohort of 40 patients implanted with the Advanced Bionics Mid-Scala electrode array, the scalar translocation group (40%) had a significantly smaller mean distance A of the cochlear basal turn (p < 0.001) and wider horizontal angle between the inferior segment of the cochlear basal turn and the mastoid facial nerve (p = 0.040). A logistic regression model incorporating distance A (p = 0.003) and horizontal facial nerve angle (p = 0.017) explained 44.0-59.9% of the variance in scalar translocation and correctly classified 82.5% of cases. Every 1mm decrease in distance A was associated with a 99.2% increase in odds of translocation [95% confidence interval 80.3%, 100%], whilst every 1-degree increase in the horizontal facial nerve angle was associated with an 18.1% increase in odds of translocation [95% CI 3.0%, 35.5%]. The study findings provide an evidence-based argument for the development of a navigation system for optimal angulation of electrode insertion during CI surgery to reduce intra-cochlear trauma.
Collapse
Affiliation(s)
- Irumee Pai
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- St. Thomas' Hearing Implant Centre, St. Thomas' Hospital, Guy's and St. Thomas' NHS Foundation Trust, 2nd Floor Lambeth Wing, London, SE1 7EH, UK.
| | - Steve Connor
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Charalampos Komninos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christos Bergeles
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Hasan Z, Key S, Lee M, Da Cruz M. Systematic Review of Intracochlear Measurements and Effect on Postoperative Auditory Outcomes after Cochlear Implant Surgery. Otol Neurotol 2024; 45:e1-e17. [PMID: 38013462 DOI: 10.1097/mao.0000000000004044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Quality and adequacy of the electrode neuron interface (ENI) is postulated to be a determining factor in affecting auditory outcomes after cochlear implantation. This study aims to review radiological parameters affecting ENI, including angular insertion (AngI), wrapping factor (WF), scalar translocation (ScaT), and electrode-modiolar distance (EMD) and their effect on auditory outcomes. DATABASES REVIEWED PubMed, MEDLINE, Embase, Scopus, OpenGrey, and Google Scholar from inception to 01 September 2022. METHODS Inclusion criteria were (i) all humans with any cochlear implant (CI); (ii) postoperative cross-sectional imaging with electrode position factors of AngI, ScaT, EMD, and/or WF; and (iii) associated auditory outcomes. Search was restricted to English-language literature. Two independent reviewers performed title and abstract screening, data extraction, and ROBINS-I risk of bias assessment. Formal statistical analysis not performed due to data heterogeneity. PROSPERO (CRD42022359198). RESULTS Thirty-one studies (n = 2,887 patients, 3,091 electrodes) underwent qualitative synthesis. Higher AngI (n = 1921 patients) demonstrated positive correlation in 11 studies, no correlation in eight studies, and negative correlation in four studies. ScaT (n = 2,115 patients) demonstrated negative correlation in 12 studies, none in six studies, and one unclear correlation. Larger EMD (n = 240 patients) showed negative correlation in two studies, no correlation in one, and unclear correlation in one study. Smaller WF (n = 369 patients) demonstrated no correlation in three studies and positive correlation in one study. CONCLUSIONS Our study finds variable reported relationship between AngI and auditory outcomes. CI electrodes with a ScaT or larger EMD are more likely to exhibit poorer outcomes, and WF does not correlate with outcomes.
Collapse
Affiliation(s)
| | - Seraphina Key
- Faculty of Medicine and Health, University of Sydney, Australia
| | - Michael Lee
- Department of Otolaryngology Head and Neck Surgery, Westmead Hospital, Sydney, Australia
| | | |
Collapse
|
10
|
Rader T, Schrank L, Spiegel JL, Nachtigäller P, Spiro JE, Hempel JM, Canis M, Mueller J. Comparison of speech perception in bimodal cochlear implant patients with respect to the cochlear coverage. HNO 2024; 72:17-24. [PMID: 37608133 PMCID: PMC10799137 DOI: 10.1007/s00106-023-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The hearing success of patients with bimodal fitting, utilizing both a cochlear implant (CI) and a hearing aid (HA), varies considerably: While some patients benefit from bimodal CI and HA, others do not. OBJECTIVES This retrospective study aimed to investigate speech perception in bimodally fitted patients and compare it with the cochlear coverage (CC). METHODS The CC was calculated with the OTOPLAN software, measuring the cochlear duct length on temporal bone CT scans of 39 patients retrospectively. The patients were categorized into two groups: CC ≤ 65% (CC500) and CC > 65% (CC600). Monaural speech intelligibility for monosyllables at a sound pressure level (SPL) of 65 dB in a free-field setting was assessed before and after CI at various time points. The two groups, one with preoperative HA and one with postoperative CI, were compared. Additionally, speech intelligibility was correlated with CC in the entire cohort before CI and at the last available follow-up (last observation time, LOT). RESULTS Overall, there was no significant difference in speech intelligibility between CC500 and CC600 patients, with both groups demonstrating a consistent improvement after implantation. While CC600 patients tended to exhibit earlier improvement in speech intelligibility, CC500 patients showed a slower initial improvement within the first 3 months but demonstrated a steeper learning curve thereafter. At LOT, the two patient groups converged, with no significant differences in expected speech intelligibility. There was no significant relationship between unimodal/unilateral free-field speech intelligibility and CC. Interestingly, patients with a CC of 70-75% achieved the highest speech intelligibility. CONCLUSION Despite of the lack of a significant correlation between CC and speech perception, patients appeared to reach their maximum in unimodal/unilateral speech perception primarily at a coverage level of 70-75%. Nevertheless, further investigation is warranted, as CC500 was associated with shorter cochlear duct length, and different types of electrodes were used in both groups.
Collapse
Affiliation(s)
- Tobias Rader
- Division of Audiology, Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Leonhard Schrank
- Division of Audiology, Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pascal Nachtigäller
- Division of Audiology, Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Judith E Spiro
- Department for Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - John-Martin Hempel
- Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joachim Mueller
- Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Franke-Trieger A, Lailach S, Shetty J, Murrmann K, Zahnert T, Neudert M. Word Recognition with a Cochlear Implant in Relation to Prediction and Electrode Position. J Clin Med 2023; 13:183. [PMID: 38202190 PMCID: PMC10780042 DOI: 10.3390/jcm13010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND the word recognition score (WRS) achieved with cochlear implants (CIs) varies widely. To account for this, a predictive model was developed based on patients' age and their pre-operative WRS. This retrospective study aimed to find out whether the insertion depth of the nucleus lateral-wall electrode arrays contributes to the deviation of the CI-achieved WRS from the predicted WRS. MATERIALS AND METHODS patients with a pre-operative maximum WRS > 0 or a pure-tone audiogram ≥80 dB were included. The insertion depth was determined via digital volume tomography. RESULTS fifty-three patients met the inclusion criteria. The median WRS achieved with the CI was 70%. The comparison of pre- and post-operative scores achieved with a hearing aid and a CI respectively in the aided condition showed a median improvement of 65 percentage points (pp). A total of 90% of the patients improved by at least 20 pp. The majority of patients reached or exceeded the prediction, with a median absolute error of 11 pp. No significant correlation was found between the deviation from the predicted WRS and the insertion depth. CONCLUSIONS our data support a previously published model for the prediction of the WRS after cochlear implantation. For the lateral-wall electrode arrays evaluated, the insertion depth did not influence the WRS with a CI.
Collapse
Affiliation(s)
- Annett Franke-Trieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany (T.Z.)
| | | | | | | | | | | |
Collapse
|
12
|
Breitsprecher TM, Baumgartner WD, Brown K, Dazert S, Doyle U, Dhanasingh A, Großmann W, Hagen R, Van de Heyning P, Mlynski R, Neudert M, Rajan G, Rak K, Van Rompaey V, Schmutzhard J, Volkenstein S, Völter C, Wimmer W, Zernotti M, Weiss NM. Effect of Cochlear Implant Electrode Insertion Depth on Speech Perception Outcomes: A Systematic Review. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e045. [PMID: 38516541 PMCID: PMC10950166 DOI: 10.1097/ono.0000000000000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 03/23/2024]
Abstract
Objective The suitable electrode array choice is broadly discussed in cochlear implantation surgery. Whether to use a shorter electrode length under the aim of structure preservation versus choosing a longer array to achieve a greater cochlear coverage is a matter of debate. The aim of this review is to identify the impact of the insertion depth of a cochlear implant (CI) electrode array on CI users' speech perception outcomes. Databases Reviewed PubMed was searched for English-language articles that were published in a peer-reviewed journal from 1997 to 2022. Methods A systematic electronic search of the literature was carried out using PubMed to find relevant literature on the impact of insertion depth on speech perception. The review was conducted according to the preferred reporting items for systematic reviews and meta-analyses guidelines of reporting. Studies in both, children and adults with pre- or postlingual hearing loss, implanted with a CI were included in this study. Articles written in languages other than English, literature reviews, meta-analyses, animal studies, histopathological studies, or studies pertaining exclusively to imaging modalities without reporting correlations between insertion depth and speech outcomes were excluded. The risk of bias was determined using the "Risk of Bias in Nonrandomized Studies of Interventions" tool. Articles were extracted by 2 authors independently using predefined search terms. The titles and abstracts were screened manually to identify studies that potentially meet the inclusion criteria. The extracted information included: the study population, type of hearing loss, outcomes reported, devices used, speech perception outcomes, insertion depth (linear insertion depth and/or the angular insertion depth), and correlation between insertion depth and the speech perception outcomes. Results A total of 215 relevant studies were assessed for eligibility. Twenty-three studies met the inclusion criteria and were analyzed further. Seven studies found no significant correlation between insertion depth and speech perception outcomes. Fifteen found either a significant positive correlation or a positive effect between insertion depth and speech perception. Only 1 study found a significant negative correlation between insertion depth and speech perception outcomes. Conclusion Although most studies reported a positive effect of insertion depth on speech perception outcomes, one-third of the identified studies reported no correlation. Thus, the insertion depth must be considered as a contributing factor to speech perception rather than as a major decisive criterion. Registration This review has been registered in PROSPERO, the international prospective register of systematic reviews (CRD42021257547), available at https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Tabita M. Breitsprecher
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Wolf-Dieter Baumgartner
- Universitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Medizinische Universität Wien, Wien, Austria
| | - Kevin Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stefan Dazert
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Una Doyle
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
| | - Anandhan Dhanasingh
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Wilma Großmann
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner,” Rostock University Medical Center, Rostock, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Paul Van de Heyning
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner,” Rostock University Medical Center, Rostock, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology Head and Neck Surgery, Technische Universität Dresden (oder TU Dresden), Faculty of Medicine (and University Hospital) Carl Gustav Carus, Dresden, Germany
| | - Gunesh Rajan
- Otolaryngology, Head and Neck Surgery, Medical School, University of Western Australia, Perth, Australia
- Faculty of Health Sciences and Medicine, University of Lucerne, Luzern, Switzerland
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Volkenstein
- Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr-University Bochum, Johannes Wesling Klinikum Minden, Bochum, Germany
| | - Christiane Völter
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Wilhelm Wimmer
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Mario Zernotti
- Division of Otolaryngology and Head and Neck Surgery, Sanatorio Allende, Catholic University of Córdoba and National University of Córdoba, Córdoba, Argentina
| | - Nora M. Weiss
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Munich, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
13
|
Breitsprecher T, Mlynski R, Völter C, Van de Heyning P, Van Rompaey V, Dazert S, Weiss NM. Accuracy of Preoperative Cochlear Duct Length Estimation and Angular Insertion Depth Prediction. Otol Neurotol 2023; 44:e566-e571. [PMID: 37550888 DOI: 10.1097/mao.0000000000003956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
OBJECTIVE In cochlear implantation with flexible lateral wall electrodes, a cochlear coverage of 70% to 80% is assumed to yield an optimal speech perception. Therefore, fitting the cochlear implant (CI) to the patient's individual anatomy has gained importance in recent years. For these reasons, the optimal angular insertion depth (AID) has to be calculated before cochlear implantation. One CI manufacturer offers a software that allows to visualize the AID of different electrode arrays. Here, it is hypothesized that these preoperative AID models overestimate the postoperatively measured insertion angle. This study aims to investigate the agreement between preoperatively estimated and postoperatively measured AID. STUDY DESIGN Retrospective cross-sectional study. SETTING Single-center tertiary referral center. PATIENTS Patients undergoing cochlear implantation. INTERVENTION Preoperative and postoperative high-resolution computed tomography (HRCT). MAIN OUTCOME MEASURES The cochlear duct length was estimated by determining cochlear parameters ( A value and B value), and the AID for the chosen electrode was (i) estimated by elliptic circular approximation by the software and (ii) measured manually postoperatively by detecting the electrode contacts after insertion. RESULTS A total of 80 HRCT imaging data sets from 69 patients were analyzed. The mean preoperative AID estimation was 662.0° (standard deviation [SD], 61.5°), and the mean postoperatively measured AID was 583.9° (SD, 73.6°). In all cases (100%), preoperative AID estimation significantly overestimated the postoperative determined insertion angle (mean difference, 38.1°). A correcting factor of 5% on preoperative AID estimation dissolves these differences. CONCLUSIONS The use of an electrode visualization tool may lead to shorter electrode array choices because of an overestimation of the insertion angle. Applying a correction factor of 0.95 on preoperative AID estimation is recommended.
Collapse
Affiliation(s)
- Tabita Breitsprecher
- Department of Otorhinolaryngology–Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum,
Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner,” University Rostock, Germany
| | - Christiane Völter
- Department of Otorhinolaryngology–Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum,
Germany
| | - Paul Van de Heyning
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Stefan Dazert
- Department of Otorhinolaryngology–Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum,
Germany
| | - Nora M Weiss
- Department of Otorhinolaryngology–Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum,
Germany
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Rader T, Schrank L, Spiegel JL, Nachtigäller P, Spiro JE, Hempel JM, Canis M, Müller J. [Speech perception as a function of cochlear coverage-comparison in bimodally hearing cochlear implant patients. German version]. HNO 2023:10.1007/s00106-023-01330-w. [PMID: 37450020 PMCID: PMC10403407 DOI: 10.1007/s00106-023-01330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Hearing success in bimodally hearing patients with a cochlear implant (CI) and a hearing aid (HA) exhibits different results: while some benefit from bimodal CI and HA, others do not. OBJECTIVE The aim of this study was to investigate hearing success in terms of speech perception in bimodally fitted patients in relation to the cochlear coverage (CC) of the CI electrodes. MATERIALS AND METHODS Using the OTOPLAN software (CAScination AG, Bern, Switzerland), CC was retrospectively measured from CT scans of the temporal bone of 39 patients, who were then categorized into two groups: CC ≤ 65% (CC500) and CC > 65% (CC600). Monaural speech intelligibility for monosyllables at a sound pressure level (SPL) of 65 dB in open field was assessed at various timepoints, preoperatively with HA and postoperatively with CI, and compared between the groups. In addition, speech intelligibility was correlated with CC in the entire cohort before surgery and during follow-up (FU). RESULTS Overall, no significant differences in speech intelligibility were found between CC500 and CC600 patients at any of the FU timepoints. However, both CC500 and CC600 patients showed a steady improvement in speech intelligibility after implantation. While CC600 patients tended to show an earlier improvement in speech intelligibility, CC500 patients tended to show a slower improvement during the first 3 months and a steeper learning curve thereafter. The two patient groups converged during FU, with no significant differences in speech intelligibility. There was no significant relationship between unimodal/unilateral free-field speech intelligibility and CC. However, patients with a CC of 70-75% achieved maximum speech intelligibility. CONCLUSION Despite a nonsignificant correlation between CC and speech discrimination, patients seem to reach their maximum in unimodal/unilateral speech understanding mainly at 70-75% coverage. However, there is room for further investigation, as CC500 was associated with a shorter cochlear duct length (CDL), and long and very long electrodes were used in both groups.
Collapse
Affiliation(s)
- Tobias Rader
- Abteilung Audiologie, Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, Marchioninistr. 15, 81377, München, Deutschland.
| | - Leonhard Schrank
- Abteilung Audiologie, Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, Marchioninistr. 15, 81377, München, Deutschland
| | - Jennifer L Spiegel
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Schwindel- und Gleichgewichtszentrum, LMU Klinikum der Universität München, München, Deutschland
| | - Pascal Nachtigäller
- Abteilung Audiologie, Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, Marchioninistr. 15, 81377, München, Deutschland
| | - Judith E Spiro
- Klinik und Poliklinik für Radiologie, LMU Klinikum der Universität München, München, Deutschland
| | - John-Martin Hempel
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, München, Deutschland
| | - Martin Canis
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, München, Deutschland
| | - Joachim Müller
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, LMU Klinikum der Universität München, München, Deutschland
| |
Collapse
|
15
|
Alothman N, Almuhawas F, Badghaish R, Alotaibi AH, Alhabib SF, Alzhrani F, Hagr A. Cochlear Implantation in Pediatrics: The Effect of Cochlear Coverage. J Pers Med 2023; 13:jpm13030562. [PMID: 36983743 PMCID: PMC10051355 DOI: 10.3390/jpm13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The effect of insertion depth and position of cochlear implant (CI) electrode arrays on speech perception remains unclear. This study aimed to determine the relationship between cochlear coverage and speech performance in children with prelingual hearing loss with CI. Pure tone audiometry (PTA) and speech audiometry, including speech reception threshold (SRT) using spondee words and speech discrimination score (SDS) using phonetically balanced monosyllabic words, were tested. The Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scales were also used. Thirty-one ears were implanted with the FLEX 28 electrode array, and 54 with the FORM 24 were included in the current study. For the studied ear, the mean cochlear duct length was 30.82 ± 2.24 mm; the mean cochlear coverage was 82.78 ± 7.49%. Cochlear coverage was a significant negative predictor for the mean pure tone threshold across frequecnies of 0.5, 1, 2, and 4 kHz (PTA4) (p = 0.019). Cochlear coverage was a significant positive predictor of SDS (p = 0.009). In children with cochlear coverage ≥ 82.78%, SDS was significantly better than in those with coverage < 82.78% (p = 0.04). Cochlear coverage was not a significant predictor of the SRT, CAP, or SIR. In conclusion, the cochlear coverage of the CI electrode array has an impact on the users' SDS. Further long-term studies with larger sample sizes should be conducted to address the most critical factors affecting CI recipients' outcomes.
Collapse
Affiliation(s)
- Noura Alothman
- Health Communication Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Reem Badghaish
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Al Hanouf Alotaibi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Salman F Alhabib
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
16
|
The effect of the surgical approach and cochlear implant electrode on the structural integrity of the cochlea in human temporal bones. Sci Rep 2022; 12:17068. [PMID: 36224234 PMCID: PMC9556579 DOI: 10.1038/s41598-022-21399-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
Cochlear implants (CI) restore hearing of severely hearing-impaired patients. Although this auditory prosthesis is widely considered to be very successful, structural cochlear trauma during cochlear implantation is an important problem, reductions of which could help to improve hearing outcomes and to broaden selection criteria. The surgical approach in cochlear implantation, i.e. round window (RW) or cochleostomy (CO), and type of electrode-array, perimodiolar (PM) or lateral wall (LW), are variables that might influence the probability of severe trauma. We investigated the effect of these two variables on scalar translocation (STL), a specific type of severe trauma. Thirty-two fresh frozen human cadaveric ears were evenly distributed over four groups receiving either RW or CO approach, and either LW or PM array. Conventional radiological multiplanar reconstruction (MPR) was compared with a reconstruction method that uncoils the spiral shape of the cochlea (UCR). Histological analysis showed that RW with PM array had STL rate of 87% (7/8), CO approach with LW array 75% (6/8), RW approach with LW array 50% (4/8) and CO approach with PM array 29% (2/7). STL assessment using UCR showed a higher inter-observer and histological agreement (91 and 94% respectively), than that using MPR (69 and 74% respectively). In particular, LW array positions were difficult to assess with MPR. In conclusion, the interaction between surgical approach and type of array should be preoperatively considered in cochlear implant surgery. UCR technique is advised for radiological assessment of CI positions, and in general it might be useful for pathologies involving the inner ear or other complex shaped bony tubular structures.
Collapse
|
17
|
Effect of Electrode Insertion Angle on Cochlear Implantation Outcomes in Adult and Children Patients with Sensorineural Hearing Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9914716. [PMID: 36052159 PMCID: PMC9427248 DOI: 10.1155/2022/9914716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
Purpose To determine the role played by electrode insertion angle in cochlear implantation (CI) outcomes in adult and children patients with sensorineural hearing loss (SNHL). Methods Adults (n = 10) and children (n = 19) with SNHL undergoing CI in a tertiary specialized hospital were retrospectively enrolled. The measurements were evaluated before and after CI surgery using sound field audiometry and speech recognition tests. Questionnaires were used to assess subjective benefits. Electrode insertion angles were determined using postoperative X-rays. Results Both adult and children patients showed significant improvements in hearing, speech performance, and audiology and speech-related quality of life after CI. The angular insertion depths of adult and children group were 323.70 ± 43.57° and 341.53 ± 57.07°, respectively, showing no significant difference. In the adult group, deeper insertion depths were found to be strongly linked to lower postoperative pure tone thresholds at 12 months and higher postoperative disyllabic Word Recognition and Sentence Recognition Scores at 6 months (all P < 0.05). In the children group, deeper insertion depth had a positive correlation with postoperative monosyllabic Word Recognition Scores 6 and 12 months after CI surgery (both P < 0.05). Multiple linear regression models were constructed to predict disyllabic Word Recognition Scores at 6 and 12 months postoperatively in the children group, in which insertion angle, duration of hearing loss, and preoperative questionnaire result were identified as dependent variables. Conclusions Greater angular insertion depths resulted in improved hearing and speech performances after CI. The benefits of greater angular insertion depths can be found in both adult and children patients and last for at least 12 months. Clinicians are expected to determine the optimal implantation direction during CI and ensure the insertion depth to improve the speech rehabilitation of patients.
Collapse
|
18
|
Dutrieux N, Quatre R, Péan V, Schmerber S. Correlation Between Cochlear Length, Insertion Angle, and Tonotopic Mismatch for MED-EL FLEX28 Electrode Arrays. Otol Neurotol 2022; 43:48-55. [PMID: 34538852 DOI: 10.1097/mao.0000000000003337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the relationship between cochlear length, insertion angle, and tonotopic mismatch and to compare the tonotopic mismatches with respect to the spiral ganglion and the organ of Corti. STUDY DESIGN Retrospective. SETTING Tertiary referral center with cochlear implant program. PATIENTS Analyses of patients' computed tomography images after cochlear implant surgery. INTERVENTION Cochlear implantation with 28-mm-long straight lateral wall electrode arrays. MAIN OUTCOME MEASURE Cochlear length, insertion angle, and insertion depth were assessed using the OTOPLAN software. Tonotopic mismatch for each electrode contact was estimated using the Greenwood (organ of Corti) and the Stakhovskaya (spiral ganglion) maps and compared. RESULTS 106 cochleae were analyzed. 99% of the electrode arrays were located in the tympanic ramp. The insertion was complete in 96% of cases. The mean cochlear length was 34.5 mm and the mean insertion angle of the apical electrode was 545°. Cochlear length was negatively correlated with the insertion angle of the contacts E1 to E9 (all p < 0.004). The tonotopic mismatch was greater at the organ of Corti than at the spiral ganglion. It was also greater at the organ of Corti in larger cochleae (correlation with mismatch for E1 r = 0.421, p < 0.0001) and in the apical than in the middle and basal regions of the cochlea. CONCLUSION Small cochlea size corresponded to higher insertion angle and reduction of tonotopic mismatch on a 28-mm-long straight lateral wall electrode array. Tonotopic mismatch could be minimized preoperatively by choosing electrode arrays according to the individual cochlear morphology and postoperatively by appropriate frequency fitting.
Collapse
Affiliation(s)
- Noémie Dutrieux
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, France
- Medical Faculty, University of Grenoble Alpes, Grenoble, France
| | - Raphaële Quatre
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, France
- Medical Faculty, University of Grenoble Alpes, Grenoble, France
| | | | - Sébastien Schmerber
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, France
- Medical Faculty, University of Grenoble Alpes, Grenoble, France
- Brain Tech Inserm Laboratory, UMR 1205, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
19
|
Fan Y, Zhang D, Banalagay R, Wang J, Noble JH, Dawant BM. Hybrid active shape and deep learning method for the accurate and robust segmentation of the intracochlear anatomy in clinical head CT and CBCT images. J Med Imaging (Bellingham) 2021; 8:064002. [PMID: 34853805 DOI: 10.1117/1.jmi.8.6.064002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Robust and accurate segmentation methods for the intracochlear anatomy (ICA) are a critical step in the image-guided cochlear implant programming process. We have proposed an active shape model (ASM)-based method and a deep learning (DL)-based method for this task, and we have observed that the DL method tends to be more accurate than the ASM method while the ASM method tends to be more robust. Approach: We propose a DL-based U-Net-like architecture that incorporates ASM segmentation into the network. A quantitative analysis is performed on a dataset that consists of 11 cochlea specimens for which a segmentation ground truth is available. To qualitatively evaluate the robustness of the method, an experienced expert is asked to visually inspect and grade the segmentation results on a clinical dataset made of 138 image volumes acquired with conventional CT scanners and of 39 image volumes acquired with cone beam CT (CBCT) scanners. Finally, we compare training the network (1) first with the ASM results, and then fine-tuning it with the ground truth segmentation and (2) directly with the specimens with ground truth segmentation. Results: Quantitative and qualitative results show that the proposed method increases substantially the robustness of the DL method while having only a minor detrimental effect (though not significant) on its accuracy. Expert evaluation of the clinical dataset shows that by incorporating the ASM segmentation into the DL network, the proportion of good segmentation cases increases from 60/177 to 119/177 when training only with the specimens and increases from 129/177 to 151/177 when pretraining with the ASM results. Conclusions: A hybrid ASM and DL-based segmentation method is proposed to segment the ICA in CT and CBCT images. Our results show that combining DL and ASM methods leads to a solution that is both robust and accurate.
Collapse
Affiliation(s)
- Yubo Fan
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | | | - Rueben Banalagay
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Jianing Wang
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Jack H Noble
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Benoit M Dawant
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| |
Collapse
|
20
|
Garcia C, Goehring T, Cosentino S, Turner RE, Deeks JM, Brochier T, Rughooputh T, Bance M, Carlyon RP. The Panoramic ECAP Method: Estimating Patient-Specific Patterns of Current Spread and Neural Health in Cochlear Implant Users. J Assoc Res Otolaryngol 2021; 22:567-589. [PMID: 33891218 PMCID: PMC8476702 DOI: 10.1007/s10162-021-00795-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
The knowledge of patient-specific neural excitation patterns from cochlear implants (CIs) can provide important information for optimizing efficacy and improving speech perception outcomes. The Panoramic ECAP ('PECAP') method (Cosentino et al. 2015) uses forward-masked electrically evoked compound action-potentials (ECAPs) to estimate neural activation patterns of CI stimulation. The algorithm requires ECAPs be measured for all combinations of probe and masker electrodes, exploiting the fact that ECAP amplitudes reflect the overlapping excitatory areas of both probes and maskers. Here we present an improved version of the PECAP algorithm that imposes biologically realistic constraints on the solution, that, unlike the previous version, produces detailed estimates of neural activation patterns by modelling current spread and neural health along the intracochlear electrode array and is capable of identifying multiple regions of poor neural health. The algorithm was evaluated for reliability and accuracy in three ways: (1) computer-simulated current-spread and neural-health scenarios, (2) comparisons to psychophysical correlates of neural health and electrode-modiolus distances in human CI users, and (3) detection of simulated neural 'dead' regions (using forward masking) in human CI users. The PECAP algorithm reliably estimated the computer-simulated scenarios. A moderate but significant negative correlation between focused thresholds and the algorithm's neural-health estimates was found, consistent with previous literature. It also correctly identified simulated 'dead' regions in all seven CI users evaluated. The revised PECAP algorithm provides an estimate of neural excitation patterns in CIs that could be used to inform and optimize CI stimulation strategies for individual patients in clinical settings.
Collapse
Affiliation(s)
- Charlotte Garcia
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- Cambridge Hearing Group, Cambridge, UK.
| | - Tobias Goehring
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Cambridge Hearing Group, Cambridge, UK
| | - Stefano Cosentino
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Cambridge Hearing Group, Cambridge, UK
| | - Richard E Turner
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
- Cambridge Hearing Group, Cambridge, UK
| | - John M Deeks
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Cambridge Hearing Group, Cambridge, UK
| | - Tim Brochier
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Cambridge Hearing Group, Cambridge, UK
| | - Taren Rughooputh
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Cambridge Hearing Group, Cambridge, UK
| | - Manohar Bance
- Cambridge Universities Hospital Foundation Trust, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Hearing Group, Cambridge, UK
| | - Robert P Carlyon
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Cambridge Hearing Group, Cambridge, UK
| |
Collapse
|
21
|
Abstract
Supplemental Digital Content is available in the text. The primary objective of this study is to identify the biographic, audiologic, and electrode position factors that influence speech perception performance in adult cochlear implant (CI) recipients implanted with a device from a single manufacturer. The secondary objective is to investigate the independent association of the type of electrode (precurved or straight) with speech perception.
Collapse
|
22
|
Guenette JP. Measuring the cochlea and cochlear implant electrode depth. Eur Radiol 2021; 31:1257-1259. [PMID: 33523303 DOI: 10.1007/s00330-020-07602-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA.
| |
Collapse
|
23
|
Zanetti D, Conte G, Di Berardino F, Lo Russo F, Cavicchiolo S, Triulzi F. Assessment of Frequency-Place Mismatch by Flat-Panel CT and Correlation With Cochlear Implant Performance. Otol Neurotol 2021; 42:165-173. [PMID: 33885263 DOI: 10.1097/mao.0000000000002967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To calculate the frequency allocation mismatch in a group of very selected cochlear implant (CI) recipients and to contrast it with the speech perception performances. STUDY DESIGN Cross-sectional observational prospective study. SETTINGS Tertiary Audiological Department, University hospital. PATIENTS Fifteen adults receiving the same CI array by the same surgeon through a posterior tympanotomy, round window approach. MAIN OUTCOME MEASURES 1) High definition flat panel computed tomography (FPCT) control of the intracochlear position of each electrode contact, and computation of the relative frequency allocation mismatch; 2) analysis of speech perception outcomes in relation with the mismatch. RESULTS Despite a consistent and reproducible surgical procedure with the same intracochlear array, significant deviations from the frequency allocation tables (FAT) assigned by default by the manufacturer were observed in this study.Their influences on speech perception performances were negligible in the simple tasks of words or sentences recognition in quiet (and, to a lesser extent also in noise). The greatest effect of a significant mismatch was observed for the vocal-consonant-vocal (VCV) sequences recognition under noise masking, the emotional and the linguistic prosody recognition, and the phonemes discrimination of the Auditory Speech Sound Evaluation (A§E) test. CONCLUSIONS The greatest frequency-to-place occurred at the high frequencies. The effect was rather irrelevant on simple words and sentences recognition, while it negatively impacted on the more complex perceptual tasks.
Collapse
Affiliation(s)
- Diego Zanetti
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan and Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Federica Di Berardino
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan and Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Lo Russo
- Postgraduation School of Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Sara Cavicchiolo
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan and Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| |
Collapse
|
24
|
Assessment of Angular Insertion-Depth of Bilateral Cochlear Implants Using Plain X-ray Scans. Otol Neurotol 2020; 41:1363-1368. [PMID: 32890291 DOI: 10.1097/mao.0000000000002830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate in cochlear implant patients, the feasibility and reliability of angular depth of insertion (aDOI) measurements using plain x-ray scans. STUDY DESIGN Retrospective study where three observers independently evaluated and compared intraoperative anterior-posterior and oblique x-ray scans. SETTING A tertiary pediatric medical center. PATIENTS Included were 50 children (100 ears) who underwent bilateral simultaneous cochlear implantation during 2008 to 2015. MAIN OUTCOME MEASURES Inter-rater agreement of aDOI measured in plain x-ray scans; effect of head position on measured aDOI; and symmetry of aDOI between patients' ears in bilateral simultaneous cochlear implantations. RESULTS Differences in the average aDOI measurements among the three observers ranged between 2 and 7 degrees. There was high inter-rater agreement (R = 0.99, p < 0.01) among all observers, and strong correlations between each pair of observers (0.92-0.99). Head rotation of 45 degrees (between the two views) resulted in a median difference in aDOI of 14 degrees, with excellent correlation among the observers. The rate of asymmetry was high, with a median difference of 39 degrees and up to 220 degrees between ears. CONCLUSIONS Assessment of aDOI using intraoperative plain x-rays is efficient and reliable. The effect of head positioning on measurement is small. Further studies are needed to evaluate the effect of aDOI and insertion symmetry on functional outcomes.
Collapse
|
25
|
Aebischer P, Meyer S, Caversaccio M, Wimmer W. Intraoperative Impedance-Based Estimation of Cochlear Implant Electrode Array Insertion Depth. IEEE Trans Biomed Eng 2020; 68:545-555. [PMID: 32746052 DOI: 10.1109/tbme.2020.3006934] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Cochlear implant impedances are influenced by the intracochlear position of the electrodes. Herein, we present an intuitive approach to calculate tissue resistances from transimpedance recordings, ultimately enabling to estimate the insertion depth of cochlear implant electrodes. METHODS Electrode positions were measured in computed-tomography images of 20 subjects implanted with the same lateral wall cochlear implant model. The tissue resistances were estimated from intraoperative telemetry data using bivariate spline extrapolation from the transimpedance recordings. Using a phenomenological model, the electrode insertion depths were estimated. RESULTS The proposed method enabled the linear insertion depth of all electrodes to be estimated with an average error of 0.76 ± 0.53 mm. CONCLUSION Intraoperative telemetry recordings correlate with the linear and angular depth of electrode insertion, enabling estimations with an accuracy that can be useful for clinical applications. SIGNIFICANCE The proposed method can be used to objectively assess surgical outcomes during and after cochlear implantation based on non-invasive and readily available telemetry recordings.
Collapse
|
26
|
Khan MMR, Labadie RF, Noble JH. Preoperative prediction of angular insertion depth of lateral wall cochlear implant electrode arrays. J Med Imaging (Bellingham) 2020; 7:031504. [PMID: 32509912 DOI: 10.1117/1.jmi.7.3.031504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/19/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Cochlear implants (CIs) use an array of electrodes surgically threaded into the cochlea to restore hearing sensation. Techniques for predicting the insertion depth of the array into the cochlea could guide surgeons toward more optimal placement of the array to reduce trauma and preserve the residual hearing. In addition to the electrode array geometry, the base insertion depth (BID) and the cochlear size could impact the overall array insertion depth. Approach: We investigated using these measurements to develop a linear regression model that can make preoperative or intraoperative predictions of the insertion depth of lateral wall CI electrodes. Computed tomography (CT) images of 86 CI recipients were analyzed. Using previously developed automated algorithms, the relative electrode position inside the cochlea was measured from the CT images. Results: A linear regression model is proposed for insertion depth prediction based on cochlea size, array geometry, and BID. The model is able to accurately predict angular insertion depths with a standard deviation of 41 deg and absolute deviation error of 32 deg. Conclusions: Surgeons may use this model for patient-customized selection of electrode array and/or to plan a BID for a given array that minimizes the likelihood of causing trauma to regions of the cochlea where residual hearing exists.
Collapse
Affiliation(s)
- Mohammad M R Khan
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Robert F Labadie
- Vanderbilt University Medical Center, Department of Otolaryngology-Head and Neck Surgery, Nashville, Tennessee, United States
| | - Jack H Noble
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| |
Collapse
|