1
|
Prakash S, Mares AC, Porres-Aguilar M, Mukherjee D, Barnes GD. Factor XI/XIa inhibitors for the prevention and treatment of venous and arterial thromboembolism: A narrative review. Vasc Med 2024; 29:85-92. [PMID: 37947131 DOI: 10.1177/1358863x231206778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
During the past decade, direct oral anticoagulants (DOACs) have advanced and simplified the prevention and treatment of venous thromboembolism (VTE). However, there remains a high incidence of bleeds, which calls for agents that have a reduced risk of bleeding. Factor XI (FXI) deficiency is associated with lower rates of venous thrombosis and stroke compared to the general population with a lower risk of bleeding. In conjunction with this, phase 2 studies have demonstrated safety and the potential for reduced thrombotic events with FXI inhibitors as compared to currently available medications. The aim of this review is to summarize key data on the clinical pharmacology of FXI, the latest developments in clinical trials of FXI inhibitors, and to describe the efficacy and safety profiles of FXI inhibitors for the prevention of venous and arterial thromboembolism.
Collapse
Affiliation(s)
- Swathi Prakash
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Adriana C Mares
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Mateo Porres-Aguilar
- Department of Internal Medicine, Divisions of Hospital and Adult Thrombosis Medicine, Texas Tech University Health Sciences Center and Paul L Foster School of Medicine, El Paso, TX, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Diseases, Texas Tech University Health Sciences Center and Paul L Foster School of Medicine, El Paso, TX, USA
| | - Geoffrey D Barnes
- Department of Internal Medicine, Division of Cardiovascular Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Toda K, Ako J, Hirayama A, Kinugawa K, Kobayashi Y, Ono M, Nishimura T, Sato N, Shindo T, Takayama M, Yasukochi S, Shiose A, Sawa Y. Three-year experience of catheter-based micro-axial left ventricular assist device, Impella, in Japanese patients: the first interim analysis of Japan registry for percutaneous ventricular assist device (J-PVAD). J Artif Organs 2023; 26:17-23. [PMID: 35467195 DOI: 10.1007/s10047-022-01328-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Catheter-based micro-axial ventricular assist device Impella® (Abiomed, Danvers, MA) has been used in Japanese patients with drug-refractory acute heart failure (AHF) since 2017. This is the first interim analysis of the ongoing Japan Registry for Percutaneous Ventricular Assist Device (J-PVAD) to investigate the safety and efficacy of Impella support. Between October 2017 and January 2020, 823 Japanese patients, who were treated with the Impella 2.5, CP, or 5.0 pump, were enrolled. The primary endpoints were safety profiles and cumulative 30-day survival. Among them, 44.8% of patients were acute myocardial infarction with cardiogenic shock. The Impella pumps were unable to implant in 4 patients. The Impella 2.5, CP, and 5.0 pumps were used in 72.4%, 6.2%, and 16.6%, respectively, and mean support duration was 8.1 ± 10.2 days. Combination use of Impella and venoarterial extracorporeal membrane oxygenation (VA-ECMO) was applied for 387 patients (47.3%). Pump stop occurred 22 patients (2.7%). Major adverse events included hemolysis (11.2%), hemorrhage/hematoma (6.1%), peripheral ischemia (1.6%), and stroke (1.6%). The overall 30-day survival was 62.2%. Survival of patients with single Impella support was significantly higher than patients with Impella combined with VA-ECMO support (81.1% vs 49.6%; p < 0.01), who had lower blood pressure, lower left ventricular ejection fraction, and higher degree of inotropic support. Results suggest that short-term outcome of Impella support for Japanese patients was favorable with acceptable safety profiles.
Collapse
Affiliation(s)
- Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, School of Medicine, Kitasato University, Kanagawa, Japan
| | | | - Koichiro Kinugawa
- The Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Nishimura
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Naoki Sato
- Department of Cardiology, Kawaguchi Cardiovascular and Respiratory Hospital, Saitama, Japan
| | - Takahiro Shindo
- Division of Cardiology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Satoshi Yasukochi
- Department of Pediatric Cardiology, Nagano Children's Hospital, Nagano, Japan
| | - Akira Shiose
- Department of Cardiovascular Surgery, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, Japan.
| | | |
Collapse
|
3
|
Zainal Abidin NA, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, Mitchell A, Hamilton JR, Ooi AS, Nesbitt WS. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost 2023; 7:100037. [PMID: 36846647 PMCID: PMC9944983 DOI: 10.1016/j.rpth.2023.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.
Collapse
Affiliation(s)
- Nurul A. Zainal Abidin
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
- Scuderia AlphaTauri F1, Bicester, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Justin R. Hamilton
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew S.H. Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick S. Nesbitt
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
|
5
|
Zhao S, Li Z, Huang F, Wu J, Gui L, Zhang X, Wang Y, Wang X, Peng S, Zhao M. Nano-scaled MTCA-KKV: for targeting thrombus, releasing pharmacophores, inhibiting thrombosis and dissolving blood clots in vivo. Int J Nanomedicine 2019; 14:4817-4831. [PMID: 31308660 PMCID: PMC6614858 DOI: 10.2147/ijn.s206294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In vitro (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxyl-Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (MTCA-KKV) adheres activated platelets, targets P-selectin and GPIIb/IIIa. This led to the development of MTCA-KKV as thrombus targeting nano-medicine. METHODS MTCA-KKV was characterized by nano-feature, anti-thrombotic activity, thrombolytic activity, thrombus target and targeting release. RESULTS In vivo 0.01 μmol/kg of MTCA-KKV formed nano-particles less than 100 nm in diameter, targeted thrombus, released anti-thrombotic and thrombolytic pharmacophores, prevented thrombosis and dissolved blood clots. CONCLUSION Based on the profiles of targeting thrombus, targeting release, inhibiting thrombosis and dissolving blood clots MTCA-KKV is a promising nano-medicine.
Collapse
Affiliation(s)
- Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ze Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Fei Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaozhen Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| |
Collapse
|
6
|
Heptapeptide-based modification leading to enhancing the action of MTCA on activated platelets, P-selectin, GPIIb/IIIa. Future Med Chem 2018; 10:1957-1970. [PMID: 29973078 DOI: 10.4155/fmc-2018-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The modification of platelet inhibitor to enhance its targeting capacity toward platelets is of clinical importance. Thus, (1R, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (MTCA), a platelet inhibitor, was modified with Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (KKV), platelet targeting peptide, to form MTCA-KKV. MATERIALS & METHODS MTCA and MTCA-KKV were synthesized to identify the effect of KKV modification on MTCA and platelets. RESULTS Atomic force microscopy imaged MTCA-KKV effectively accumulated on activated platelets. UV spectra showed that MTCA-KKV concentration dependently changed P-selectin and GPIIb/IIIa conformations. For platelet aggregation, the IC50 of MTCA-KKV was approximately 1/10 folds of MTCA. CONCLUSION KKV modification led to forming MTCA-KKV that is superior to MTCA in terms of accumulating on activated platelets, targeting P-selectin and GPIIb/IIIa and inhibiting platelet aggregation. MTCA-KKV could be a promising lead for further investigation.
Collapse
|
7
|
Valerio L, Sheriff J, Tran PL, Brengle W, Redaelli A, Fiore GB, Pappalardo F, Bluestein D, Slepian MJ. Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support. Thromb Res 2017; 163:162-171. [PMID: 29428715 DOI: 10.1016/j.thromres.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Continuous flow ventricular assist devices (cfVADs) continue to be limited by thrombotic complications associated with disruptive flow patterns and supraphysiologic shear stresses. Patients are prescribed complex antiplatelet therapies, which do not fully prevent recurrent thromboembolic events. This is partially due to limited data on antiplatelet efficacy under cfVAD-associated shear conditions. MATERIALS AND METHODS We investigated the efficacy of antiplatelet drugs directly acting on three pathways: (1) cyclooxygenase (aspirin), (2) phosphodiesterase (dipyridamole, pentoxifylline, cilostazol), and (3) glycoprotein IIb-IIIa (eptifibatide). Gel-filtered platelets treated with these drugs were exposed for 10min to either constant shear stresses (30dyne/cm2 and 70dyne/cm2) or dynamic shear stress profiles extracted from simulated platelet trajectories through a cfVAD (Micromed DeBakey). Platelet activation state (PAS) was measured using a modified prothrombinase-based assay, with drug efficacy quantified based on PAS reduction compared to untreated controls. RESULTS AND CONCLUSIONS Significant PAS reduction was observed for all drugs after exposure to 30dyne/cm2 constant shear stress, and all drugs but dipyridamole after exposure to the 30th percentile shear stress waveform of the cfVAD. However, only cilostazol was significantly effective after 70dyne/cm2 constant shear stress exposure, though no significant reduction was observed upon exposure to median shear stress conditions in the cfVAD. These results, coupled with the persistence of reported clinical thrombotic complication, suggest the need for the development of new classes of drugs that are especially designed to mitigate thrombosis in cfVAD patients, while reducing or eliminating the risk of bleeding.
Collapse
Affiliation(s)
- Lorenzo Valerio
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Cardiothoracic Anesthesia and Intensive Care, Istituto Scientifico San Raffaele, Milan, Italy
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Phat L Tran
- Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - William Brengle
- Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gianfranco B Fiore
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Federico Pappalardo
- Department of Cardiothoracic Anesthesia and Intensive Care, Istituto Scientifico San Raffaele, Milan, Italy
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Marvin J Slepian
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|