1
|
de Boer A, Krom A, Kalaai R, de Vries M, Hogeveen M, Obermann-Borst SA, Vermeulen M, van der Hout-van der Jagt MB, van Haren JS, Andriessen P, de Vries MC, Geurtzen R, Verweij EJT. Stakeholder Perspectives on the Design of First-In-Human Trials for Artificial Amnion and Placenta Technology: A Qualitative Study. BJOG 2025. [PMID: 40302112 DOI: 10.1111/1471-0528.18189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
OBJECTIVE Artificial Amnion and Placenta Technology (AAPT), designed to improve outcomes in extreme prematurity, has shown promise in animal studies, with human trials anticipated soon. This study seeks to inform the responsible design of future trials by utilising insights from parents who experienced an (imminent) extremely premature birth and perinatal healthcare professionals (HCPs). DESIGN A qualitative study using individual and focus group interviews. SETTING This study was part of a Dutch study called Toward Individualised care of the Youngest. SAMPLE Fifteen parents who experienced an (imminent) extremely premature birth and 46 HCPs were interviewed. METHODS Eight focus-group and five individual interviews were performed and transcribed. The transcripts were thematically analysed. MAIN OUTCOMES AND MEASURES The perspectives of HCPs and experienced parents on what they considered essential for human AAPT trials. RESULTS Analyses revealed some critical considerations represented in six themes: (1) optimise the animal model, (2) determine the goal of human trials, (3) carefully establish the research population, (4) formulate stop criteria, success criteria and outcome measures, (5) determine the role for parents during the AAPT trial, and (6) develop protocols for the trial and address logistical considerations. CONCLUSION This study emphasises the critical role of stakeholder involvement in safeguarding the responsible design of human AAPT trials. Defining the trial objectives including well-defined stop criteria and follow-up schemes is a key element for the human AAPT trials. Establishing consensus among stakeholders is essential, as shared recommendations will facilitate alignment of expectations and promote engagement.
Collapse
Affiliation(s)
- Angret de Boer
- Department of Obstetrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - André Krom
- Department of Medical Ethics and Health law, Leiden University Medical Center, Leiden, the Netherlands
| | - Rania Kalaai
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Marieke de Vries
- Institute for Computing and Information Sciences (iCIS), Radboud University, Nijmegen, the Netherlands
| | - Marije Hogeveen
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | | | - Marijn Vermeulen
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - M Beatrijs van der Hout-van der Jagt
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, the Netherlands
- Departments of Electrical Engineering and Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Juliette S van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter Andriessen
- Department of Neonatology, Máxima Medical Center, Veldhoven, the Netherlands
| | - Martine C de Vries
- Department of Medical Ethics and Health law, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosa Geurtzen
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - E J T Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
de Boer A, Krom A, Kalaai R, de Vries M, Hogeveen M, Obermann-Borst SA, Vermeulen M, van Haren JS, Andriessen P, de Vries MC, Verweij EJT, Geurtzen R. Human artificial placenta technology-trials: counselling and informed consent using healthcare professionals' and parental perspectives. Pediatr Res 2025:10.1038/s41390-025-04051-8. [PMID: 40240874 DOI: 10.1038/s41390-025-04051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The Artificial Amnion and Placenta Technology (AAPT) is developed to improve outcomes of extremely premature birth, with first in-human trials expected in the coming years. Empirical research with key stakeholders is essential for responsibly designing these trials. This study aims to discuss considerations for counselling and informed consent for the first in-human trials of the AAPT, discussing legal and ethical considerations. METHODS A qualitative study using both individual and focus group interviews with healthcare professionals (HCPs) and parents was performed. Interviews were thematically analysed. RESULTS Fifteen parents and 46 HCPs were interviewed. The results are represented into key themes reflecting participants' perspectives on: (I) the moral and legal status of the subject treated in AAPT trials, (II) the first participant: the pregnant person, and (III) the terminology used to describe the technology. Furthermore, considerations around the informed consent process and counselling, including parental hope, are described. The findings suggest these factors are interconnected, as the moral and legal context surrounding AAPT trials influences the approach to counselling and informed consent. CONCLUSION Resolving key ethical and legal issues important for counselling and informed consent is essential for establishing parental right and the development of a responsible, ethically sound informed consent process. IMPACT Addressing ethical and legal issues surrounding counseling and informed consent is essential to safeguard a responsible and ethically sound consent process for future human artificial amnion and placenta technology (AAPT)-trials. This is the first study exploring stakeholder perspectives on the AAPT, highlighting the complexities in counselling and informed consent, such as the moral status of participants and the rights of all parties, which must be carefully navigated before trial designs can progress. The article underscores the importance of establishing consensus and maintaining open dialogue among all stakeholders to create a robust, ethically grounded framework for informed consent in future trials.
Collapse
Affiliation(s)
- Angret de Boer
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - André Krom
- Department of Medical Ethics and Health Law, Leiden University Medical Center, Leiden, The Netherlands
| | - Rania Kalaai
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Marieke de Vries
- Institute for Computing and Information Sciences (iCIS), Radboud University, Nijmegen, The Netherlands
| | - Marije Hogeveen
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | | | - Marijn Vermeulen
- Care4Neo, Neonatal patient and parent advocacy organization, Rotterdam, The Netherlands
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Juliette S van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peter Andriessen
- Department of Neonatology, Máxima Medical Center, Veldhoven, The Netherlands
| | - Martine C de Vries
- Department of Medical Ethics and Health Law, Leiden University Medical Center, Leiden, The Netherlands
| | - E J T Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosa Geurtzen
- Department of Neonatology, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
De Bie FR, Binion CC, Antiel RM. Artificial womb technology - A more physiologic solution to treating extreme prematurity. Eur J Obstet Gynecol Reprod Biol X 2025; 25:100359. [PMID: 39817031 PMCID: PMC11732160 DOI: 10.1016/j.eurox.2024.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Treatment of extreme premature infants (EPI) is limited by developmental immaturity primarily of the lung. A paradigm shift towards a more physiologic treatment of EPI as fetal neonates or fetonates, by keeping them in a womb-like environment to allow continued organ maturation, is the rationale for artificial womb technology. In this review, we discuss the artificial placenta and womb technology, it's rationale, the history of its development, the most recent preclinical models described in the literature and finally pertinent ethical considerations.
Collapse
Affiliation(s)
| | - Chase C. Binion
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
4
|
Fallon BP, Lautner-Csorba O, Major TC, Lautner G, Harvey SL, Langley MW, Johnson MD, Saveski C, Matusko N, Rabah R, Rojas-Pena A, Meyerhoff ME, Bartlett RH, Mychaliska GB. Extracorporeal life support without systemic anticoagulation: a nitric oxide-based non-thrombogenic circuit for the artificial placenta in an ovine model. Pediatr Res 2024; 95:93-101. [PMID: 37087539 PMCID: PMC10600655 DOI: 10.1038/s41390-023-02605-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Clinical translation of the extracorporeal artificial placenta (AP) is impeded by the high risk for intracranial hemorrhage in extremely premature newborns. The Nitric Oxide Surface Anticoagulation (NOSA) system is a novel non-thrombogenic extracorporeal circuit. This study aims to test the NOSA system in the AP without systemic anticoagulation. METHODS Ten extremely premature lambs were delivered and connected to the AP. For the NOSA group, the circuit was coated with DBHD-N2O2/argatroban, 100 ppm nitric oxide was blended into the sweep gas, and no systemic anticoagulation was given. For the Heparin control group, a non-coated circuit was used and systemic anticoagulation was administered. RESULTS Animals survived 6.8 ± 0.6 days with normal hemodynamics and gas exchange. Neither group had any hemorrhagic or thrombotic complications. ACT (194 ± 53 vs. 261 ± 86 s; p < 0.001) and aPTT (39 ± 7 vs. 69 ± 23 s; p < 0.001) were significantly lower in the NOSA group than the Heparin group. Platelet and leukocyte activation did not differ significantly from baseline in the NOSA group. Methemoglobin was 3.2 ± 1.1% in the NOSA group compared to 1.6 ± 0.6% in the Heparin group (p < 0.001). CONCLUSIONS The AP with the NOSA system successfully supported extremely premature lambs for 7 days without significant bleeding or thrombosis. IMPACT The Nitric Oxide Surface Anticoagulation (NOSA) system provides effective circuit-based anticoagulation in a fetal sheep model of the extracorporeal artificial placenta (AP) for 7 days. The NOSA system is the first non-thrombogenic circuit to consistently obviate the need for systemic anticoagulation in an extracorporeal circuit for up to 7 days. The NOSA system may allow the AP to be implemented clinically without systemic anticoagulation, thus greatly reducing the intracranial hemorrhage risk for extremely low gestational age newborns. The NOSA system could potentially be applied to any form of extracorporeal life support to reduce or avoid systemic anticoagulation.
Collapse
Affiliation(s)
- Brian P Fallon
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Orsolya Lautner-Csorba
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Terry C Major
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gergely Lautner
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen L Harvey
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark W Langley
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew D Johnson
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Saveski
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Niki Matusko
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Raja Rabah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alvaro Rojas-Pena
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Surgery, Section of Transplantation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert H Bartlett
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George B Mychaliska
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Usuda H, Watanabe S, T H, Saito M, Sato S, Ikeda H, Kumagai Y, Choolani MC, Kemp MW. Artificial placenta technology: History, potential and perception. Placenta 2023; 141:10-17. [PMID: 37743742 DOI: 10.1016/j.placenta.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
As presently conceptualised, the artificial placenta (AP) is an experimental life support platform for extremely preterm infants (i.e. 400-600 g; 21-23+6 weeks of gestation) born at the border of viability. It is based around the oxygenation of the periviable fetus using gas-exchangers connected to the fetal vasculature. In this system, the lung remains fluid-filled and the fetus remains in a quiescent state. The AP has been in development for some sixty years. Over this time, animal experimental models have evolved iteratively from employing external pump-driven systems used to support comparatively mature fetuses (generally goats or sheep) to platforms driven by the fetal heart and used successfully to maintain extremely premature fetuses weighing around 600 g. Simultaneously, sizable advances in neonatal and obstetric care mean that the nature of a potential candidate patient for this therapy, and thus the threshold success level for justifying its adoption, have both changed markedly since this approach was first conceived. Five landmark breakthroughs have occurred over the developmental history of the AP: i) the first human studies reported in the 1950's; ii) foundation animal studies reported in the 1960's; iii) the first extended use of AP technology combined with fetal pulmonary resuscitation reported in the 1990s; iv) the development of AP systems powered by the fetal heart reported in the 2000's; and v) the adaption of this technology to maintain extremely preterm fetuses (i.e. 500-600 g body weight) reported in the 2010's. Using this framework, the present paper will provide a review of the developmental history of this long-running experimental system and up-to-date assessment of the published field today. With the apparent acceleration of AP technology towards clinical application, there has been an increase in the attention paid to the field, along with some inaccurate commentary regarding its potential application and merits. Additionally, this paper will address several misrepresentations regarding the potential application of AP technology that serve to distract from the significant potential of this approach to greatly improve outcomes for extremely preterm infants born at or close to the present border of viability.
Collapse
Affiliation(s)
- H Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - S Watanabe
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hanita T
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - M Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - S Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - H Ikeda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Y Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - M C Choolani
- Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia
| | - M W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol 2023; 14:118. [PMID: 37582766 PMCID: PMC10426113 DOI: 10.1186/s40104-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China.
| |
Collapse
|
7
|
An Artificial Placenta Experimental System in Sheep: Critical Issues for Successful Transition and Survival up to One Week. Biomedicines 2023; 11:biomedicines11030702. [PMID: 36979681 PMCID: PMC10044909 DOI: 10.3390/biomedicines11030702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Objective: To describe the development of an artificial placenta (AP) system in sheep with learning curve and main bottlenecks to allow survival up to one week. Methods: A total of 28 fetal sheep were transferred to an AP system at 110–115 days of gestation. The survival goal in the AP system was increased progressively in three consecutive study groups: 1–3 h (n = 8), 4–24 h (n = 10) and 48–168 h (n = 10). Duration of cannulation procedure, technical complications, pH, lactate, extracorporeal circulation (EC) circuit flows, fetal heart rate, and outcomes across experiments were compared. Results: There was a progressive reduction in cannulation complications (75%, 50% and 0%, p = 0.004), improvement in initial pH (7.20 ± 0.06, 7.31 ± 0.04 and 7.33 ± 0.02, p = 0.161), and increment in the rate of experiments reaching survival goal (25%, 70% and 80%, p = 0.045). In the first two groups, cannulation accidents, air bubbles in the extracorporeal circuit, and thrombotic complications were the most common cause of AP system failure. Conclusions: Achieving a reproducible experimental setting for an AP system is extremely challenging, time- and effort-consuming, and requires a highly multidisciplinary team. As a result of the learning curve, we achieved reproducible transition and survival up to 7 days. Extended survival requires improving instrumentation with custom-designed devices.
Collapse
|
8
|
Omecinski KS, Frankowski BJ, Federspiel WJ. Design and In Vitro Evaluation of an Artificial Placenta Made From Hollow Fiber Membranes. ASAIO J 2023; 69:e86-e92. [PMID: 36716073 PMCID: PMC9897463 DOI: 10.1097/mat.0000000000001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For infants born at the border of viability, care practices and morbimortality rates vary widely between centers. Trends show significant improvement, however, with increasing gestational age and weight. For periviable infants, the goal of critical care is to bridge patients to improved outcomes. Current practice involves ventilator therapy, resulting in chronic lung injuries. Research has turned to artificial uterine environments, where infants are submerged in an artificial amniotic fluid bath and provided respiratory assistance via an artificial placenta. We have developed the Preemie-Ox, a hollow fiber membrane bundle that provides pumpless respiratory support via umbilical cord cannulation. Computational fluid dynamics was used to design an oxygenator that could achieve a carbon dioxide removal rate of 12.2 ml/min, an outlet hemoglobin saturation of 100%, and a resistance of less than 71 mmHg/L/min at a blood flow rate of 165 ml/min. A prototype was utilized to evaluate in-vitro gas exchange, resistance, and plasma-free hemoglobin generation. In-vitro gas exchange was 4% higher than predicted results and no quantifiable plasma-free hemoglobin was produced.
Collapse
Affiliation(s)
- Katelin S Omecinski
- From the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J Frankowski
- From the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Federspiel
- From the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Spencer BL, Mychaliska GB. Updates in Neonatal Extracorporeal Membrane Oxygenation and the Artificial Placenta. Clin Perinatol 2022; 49:873-891. [PMID: 36328605 DOI: 10.1016/j.clp.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracorporeal life support, initially performed in neonates, is now commonly used for both pediatric and adult patients requiring pulmonary and/or cardiac support. Data suggests the clinical feasibility of Extracorporeal Membrane Oxygenation for premature infants (29-33 weeks estimated gestational age [EGA]). For extremely premature infants less than 28 weeks EGA, an artificial placenta has been developed to recreate the fetal environment. This approach is investigational but clinical translation is promising. In this article, we discuss the current state and advances in neonatal and "preemie Extracorporeal Membrane Oxygenation" and the development of an artificial placenta and its potential use in extremely premature infants.
Collapse
Affiliation(s)
- Brianna L Spencer
- Department of Surgery, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
| | - George B Mychaliska
- Section of Pediatric Surgery, Department of Surgery, Fetal Diagnosis and Treatment Center, University of Michigan Medical School, C.S. Mott Children's Hospital, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Spencer BL, Mychaliska GB. Milestones for clinical translation of the artificial placenta. Semin Fetal Neonatal Med 2022; 27:101408. [PMID: 36437184 DOI: 10.1016/j.siny.2022.101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite significant advances in the treatment of prematurity, premature birth results in significant mortality and morbidity. In particular, extremely low gestational age newborns (ELGANs) defined as <28 weeks estimated gestational age (EGA) suffer from disproportionate mortality and morbidity. A radical paradigm shift in the treatment of prematurity is to recreate fetal physiology using an extracorporeal VV-ECLS artificial placenta (AP) or an AV-ECLS artificial womb (AW). Over the past 15 years, tremendous advances have been made in the laboratory confirming long-term support and organ protection and ongoing development. The major milestones to clinical application are miniaturization, anticoagulation, clinical risk stratification, specialized critical care protocols, a regulatory path and a strategy and platform to translate technology to the bedside. Currently, several groups are addressing the remaining milestones for clinical translation.
Collapse
Affiliation(s)
- Brianna L Spencer
- Department of Surgery, University of Michigan, 2101 Taubman Center 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - George B Mychaliska
- Section of Pediatric Surgery, Department of Surgery, Fetal Diagnosis and Treatment Center, C.S. Mott Children's Hospital, 1540 E Hospital Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Charest-Pekeski AJ, Cho SKS, Aujla T, Sun L, Floh AA, McVey MJ, Sheta A, Estrada M, Crawford-Lean L, Foreman C, Mroczek D, Belik J, Saini BS, Lim JM, Moir OJ, Lee FT, Quinn M, Darby JRT, Seed M, Morrison JL, Haller C. Impact of the Addition of a Centrifugal Pump in a Preterm Miniature Pig Model of the Artificial Placenta. Front Physiol 2022; 13:925772. [PMID: 35941934 PMCID: PMC9356302 DOI: 10.3389/fphys.2022.925772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
The recent demonstration of normal development of preterm sheep in an artificial extrauterine environment has renewed interest in artificial placenta (AP) systems as a potential treatment strategy for extremely preterm human infants. However, the feasibility of translating this technology to the human preterm infant remains unknown. Here we report the support of 13 preterm fetal pigs delivered at 102 ± 4 days (d) gestation, weighing 616 ± 139 g with a circuit consisting of an oxygenator and a centrifugal pump, comparing these results with our previously reported pumpless circuit (n = 12; 98 ± 4 days; 743 ± 350 g). The umbilical vessels were cannulated, and fetuses were supported for 46.4 ± 46.8 h using the pumped AP versus 11 ± 13 h on the pumpless AP circuit. Upon initiation of AP support on the pumped system, we observed supraphysiologic circuit flows, tachycardia, and hypertension, while animals maintained on a pumpless AP circuit exhibited subphysiologic flows. On the pumped AP circuit, there was a progressive decline in umbilical vein (UV) flow and oxygen delivery. We conclude that the addition of a centrifugal pump to the AP circuit improves survival of preterm pigs by augmenting UV flow through the reduction of right ventricular afterload. However, we continued to observe the development of heart failure within a matter of days.
Collapse
Affiliation(s)
- Alex J. Charest-Pekeski
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven K. S. Cho
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tanroop Aujla
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alejandro A. Floh
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark J. McVey
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Ayman Sheta
- Department of Pediatrics, Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marvin Estrada
- Lab Animal Services, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Crawford-Lean
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Celeste Foreman
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Dariusz Mroczek
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jaques Belik
- Department of Pediatrics, Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brahmdeep S. Saini
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessie Mei Lim
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia J. Moir
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fu-Tsuen Lee
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Christoph Haller
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Christoph Haller,
| |
Collapse
|
12
|
Harvey SL, Fallon BP, McLeod JS, Matusko N, Rabah R, Arnold MA, Rojas-Pena A, Bartlett RH, Mychaliska GB. Hepatic Function in Premature Lambs Supported by the Artificial Placenta and Total Parenteral Nutrition. ASAIO J 2022; 68:949-955. [PMID: 35383597 PMCID: PMC9246820 DOI: 10.1097/mat.0000000000001586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The artificial placenta (AP) promotes organ development and reduces organ injury in a lamb model of extreme prematurity. This study evaluates hepatic outcomes after AP support with total parenteral nutrition (TPN) administration. Premature lambs (116-121 days estimated gestational age; term = 145) were cannulated for 7 days of AP support. Lambs received TPN with SMOFlipid (n = 7) or Intralipid (n = 5). Liver function and injury were compared between the two groups biochemically and histologically. Groups were compared by ANOVA with Tukey's multiple comparisons or linear-mixed effects models. From baseline to day 7, total bilirubin (Intralipid 2.6 ± 2.3 to 7.9 ± 4.4 mg/dl; SMOFlipid 0.3 ± 0.1 to 5.5 ± 2.3 mg/dl), alanine aminotransferase, and gamma-glutamyl transferase increased in both groups ( p < 0.001 for all). Direct bilirubin (0.3 ± 0.2 to 1.8 ± 1.4 mg/dl; p = 0.006) and AST (27 ± 5 to 309 ± 242 mg/dl; p < 0.001) increased in SMOFlipid group (not measured in Intralipid group). On liver histology, Intralipid showed more cholestasis than SMOFlipid; both groups showed more than tissue controls. The Intralipid group alone showed hepatocyte injury and had more congestion than controls. Lambs supported by the AP with TPN administration maintain normal hepatic function and sustain minimal hepatic injury. SMOFlipid is associated with decreased cholestasis and hepatic injury versus Intralipid.
Collapse
Affiliation(s)
- Stephen L. Harvey
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Brian P. Fallon
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Jennifer S. McLeod
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Niki Matusko
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Raja Rabah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - Meghan A. Arnold
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Alvaro Rojas-Pena
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
- Department of Surgery, Section of Transplantation, University of Michigan Medical School, Ann Arbor, MI
| | - Robert H. Bartlett
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - George B. Mychaliska
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
13
|
Burgos CM, Frenckner B, Broman LM. Premature and Extracorporeal Life Support: Is it Time? A Systematic Review. ASAIO J 2022; 68:633-645. [PMID: 34593681 DOI: 10.1097/mat.0000000000001555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Early preterm birth < 34 gestational weeks (GA) and birth weight (BW) <2 kg are relative contraindications for extracorporeal membrane oxygenation (ECMO). However, with improved technology, ECMO is presently managed more safely and with decreasing complications. Thus, these relative contraindications may no longer apply. We performed a systematic review to evaluate the existing literature on ECMO in early and late (34-37 GA) prematurity focusing on survival to hospital discharge and the complication intracranial hemorrhage (ICH). Data sources: MEDLINE, PubMed, Web of Science, Embase, and the Cochrane Database. Only publications in the English language were evaluated. Of the 36 included studies, 23 were related to ECMO support for respiratory failure, 10 for cardiac causes, and four for congenital diaphragmatic hernia (CDH). Over the past decades, the frequency of ICH has declined (89-21%); survival has increased in both early prematurity (25-76%), and in CDH (33-75%), with outcome similar to late prematurity (48%). The study was limited by an inherent risk of bias from overlapping single-center and registry data. Both the risk of ICH and death have decreased in prematurely born treated with ECMO. We challenge the 34 week GA time limit for ECMO and propose an international task force to revise current guidelines. At present, gestational age < 34 weeks might no longer be considered a contraindication for ECMO in premature neonates.
Collapse
Affiliation(s)
- Carmen Mesas Burgos
- From the Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Björn Frenckner
- From the Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
Debates about treatment for the tiniest premature babies focus on three different approaches - universal non-resuscitation, selective resuscitation, and universal resuscitation. Doctors, hospitals, and professional societies differ on which approach is preferable. The debate is evolving as studies show that survival rates for babies born at 22 and 23 weeks of gestation are steadily improving at centers that offer active treatment to these babies. Still, many centers do not offer such treatment or, if they do, actively discourage it. The doctors and centers that discourage treatment have concerns about the chances for survival, neurodevelopmental impairment among survivors, and cost. Centers that offer and encourage treatment cite evidence that many babies born at 22 weeks can survive, that most survivors have good neurodevelopmental outcomes, and that NICU care for tiny babies is cost-effective compared to many common and uncontroversial treatments. The debate touches on many fundamental ethical issues that have been present in neonatology since its inception as a medical specialty.
Collapse
|
15
|
THE ARTIFICIAL PLACENTA: SCI-FI OR REALITY? REVISTA MÉDICA CLÍNICA LAS CONDES 2021. [DOI: 10.1016/j.rmclc.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Fallon BP, Mychaliska GB. Development of an artificial placenta for support of premature infants: narrative review of the history, recent milestones, and future innovation. Transl Pediatr 2021; 10:1470-1485. [PMID: 34189106 PMCID: PMC8192990 DOI: 10.21037/tp-20-136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over 50 years ago, visionary researchers began work on an extracorporeal artificial placenta to support premature infants. Despite rudimentary technology and incomplete understanding of fetal physiology, these pioneering scientists laid the foundation for future work. The research was episodic, as medical advances improved outcomes of premature infants and extracorporeal life support (ECLS) was introduced for the treatment of term and near-term infants with respiratory or cardiac failure. Despite ongoing medical advances, extremely premature infants continue to suffer a disproportionate burden of mortality and morbidity due to organ immaturity and unintended iatrogenic consequences of medical treatment. With advancing technology and innovative approaches, there has been a resurgence of interest in developing an artificial placenta to further diminish the mortality and morbidity of prematurity. Two related but distinct platforms have emerged to support premature infants by recreating fetal physiology: a system based on arteriovenous (AV) ECLS and one based on veno-venous (VV) ECLS. The AV-ECLS approach utilizes only the umbilical vessels for cannulation. It requires immediate transition of the infant at the time of birth to a fluid-filled artificial womb to prevent umbilical vessel spasm and avoid gas ventilation. In contradistinction, the VV-ECLS approach utilizes the umbilical vein and the internal jugular vein. It would be applied after birth to infants failing maximal medical therapy or preemptively if risk stratified for high mortality and morbidity. Animal studies are promising, demonstrating prolonged support and ongoing organ development in both systems. The milestones for clinical translation are currently being evaluated.
Collapse
Affiliation(s)
- Brian P Fallon
- Department of Surgery, University of Michigan, Michigan Medicine, Ann Arbor, Michigan, USA
| | - George B Mychaliska
- Department of Surgery, Section of Pediatric Surgery, Fetal Diagnosis and Treatment Center, University of Michigan, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Stephens EH, Dearani JA, Qureshi MY, Segura LG, Arendt KW, Bendel-Stenzel EM, Ruano R. Toward Eliminating Perinatal Comfort Care for Prenatally Diagnosed Severe Congenital Heart Defects: A Vision. Mayo Clin Proc 2021; 96:1276-1287. [PMID: 33958058 DOI: 10.1016/j.mayocp.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Over the past 40 years, the medical and surgical management of congenital heart disease has advanced considerably. However, substantial room for improvement remains for certain lesions that have high rates of morbidity and mortality. Although most congenital cardiac conditions are well tolerated during fetal development, certain abnormalities progress in severity over the course of gestation and impair the development of other organs, such as the lungs or airways. It follows that intervention during gestation could potentially slow or reverse elements of disease progression and improve prognosis for certain congenital heart defects. In this review, we detail specific congenital cardiac lesions that may benefit from fetal intervention, some of which already have documented improved outcomes with fetal interventions, and the state-of-the-science in each of these areas. This review includes the most relevant studies from a PubMed database search from 1970 to the present using key words such as fetal cardiac, fetal intervention, fetal surgery, and EXIT procedure. Fetal intervention in congenital cardiac surgery is an exciting frontier that promises further improvement in congenital heart disease outcomes. When fetuses who can benefit from fetal intervention are identified and appropriately referred to centers of excellence in this area, patient care will improve.
Collapse
Affiliation(s)
| | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | | | - Leal G Segura
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katherine W Arendt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Ellen M Bendel-Stenzel
- Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, MN; Division of Neonatal Medicine, Mayo Clinic, Rochester, MN
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Charest‐Pekeski AJ, Sheta A, Taniguchi L, McVey MJ, Floh A, Sun L, Aujla T, Cho SKS, Ren J, Crawford‐Lean L, Foreman C, Lim JM, Saini BS, Estrada M, Lam A, Belik J, Mroczek D, Quinn M, Holman SL, Darby JRT, Seed M, Morrison JL, Haller C. Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus. Physiol Rep 2021; 9:e14742. [PMID: 33650787 PMCID: PMC7923578 DOI: 10.14814/phy2.14742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low-resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195-3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r2 = .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short-term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model.
Collapse
Affiliation(s)
- Alex J. Charest‐Pekeski
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Ayman Sheta
- Department of PediatricsDivision of NeonatologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Luiza Taniguchi
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Mark J. McVey
- Department of Anesthesia and Pain MedicineDepartment of Anesthesiology and Pain MedicineThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
- Department of PhysicsRyerson UniversityTorontoOntarioCanada
| | - Alejandro Floh
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Critical Care MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Liqun Sun
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Tanroop Aujla
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Steven K. S. Cho
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jiaqi Ren
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lynn Crawford‐Lean
- Division of Cardiovascular SurgeryThe Labatt Family Heart CentreThe Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| | - Celeste Foreman
- Division of Cardiovascular SurgeryThe Labatt Family Heart CentreThe Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| | - Jessie Mei Lim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Brahmdeep S. Saini
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Marvin Estrada
- Lab Animal ServicesResearch InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Anson Lam
- Lab Animal ServicesResearch InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jaques Belik
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Dariusz Mroczek
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Megan Quinn
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Mike Seed
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Janna L. Morrison
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Christoph Haller
- Division of Cardiovascular SurgeryThe Labatt Family Heart CentreThe Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| |
Collapse
|
19
|
Swol J, Shigemura N, Ichiba S, Steinseifer U, Anraku M, Lorusso R. Artificial lungs--Where are we going with the lung replacement therapy? Artif Organs 2020; 44:1135-1149. [PMID: 33098217 DOI: 10.1111/aor.13801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Lung transplantation may be a final destination therapy in lung failure, but limited donor organ availability creates a need for alternative management, including artificial lung technology. This invited review discusses ongoing developments and future research pathways for respiratory assist devices and tissue engineering to treat advanced and refractory lung disease. An overview is also given on the aftermath of the coronavirus disease 2019 pandemic and lessons learned as the world comes out of this situation. The first order of business in the future of lung support is solving the problems with existing mechanical devices. Interestingly, challenges identified during the early days of development persist today. These challenges include device-related infection, bleeding, thrombosis, cost, and patient quality of life. The main approaches of the future directions are to repair, restore, replace, or regenerate the lungs. Engineering improvements to hollow fiber membrane gas exchangers are enabling longer term wearable systems and can be used to bridge lung failure patients to transplantation. Progress in the development of microchannel-based devices has provided the concept of biomimetic devices that may even enable intracorporeal implantation. Tissue engineering and cell-based technologies have provided the concept of bioartificial lungs with properties similar to the native organ. Recent progress in artificial lung technologies includes continued advances in both engineering and biology. The final goal is to achieve a truly implantable and durable artificial lung that is applicable to destination therapy.
Collapse
Affiliation(s)
- Justyna Swol
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Intensive Care Medicine, Paracelsus Medical University Nuremberg, General Hospital Nuremberg, Nuremberg, Germany
| | - Norihisa Shigemura
- Division of Cardiovascular Surgery, Temple University Health System Inc., Philadelphia, PA, USA
| | - Shingo Ichiba
- Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Bunkyo-ku, Japan
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Aachen, Germany
| | - Masaki Anraku
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine Faculty of Medicine, Bunkyo-ku, Japan
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department - Heart & Vascular Centre, Maastricht University Medical Hospital, Maastricht, The Netherlands
| |
Collapse
|
20
|
De Bie FR, Davey MG, Larson AC, Deprest J, Flake AW. Artificial placenta and womb technology: Past, current, and future challenges towards clinical translation. Prenat Diagn 2020; 41:145-158. [PMID: 32875581 DOI: 10.1002/pd.5821] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/12/2023]
Abstract
Extreme prematurity remains a major cause of neonatal mortality and severe long-term morbidity. Current neonatal care is associated with significant morbidity due to iatrogenic injury and developmental immaturity of extreme premature infants. A more physiologic approach, replacing placental function and providing a womb-like environment, is the foundational principle of artificial placenta (AP) and womb (AW) technology. The concept has been studied during the past 60 years with limited success. However, recent technological advancements and a greater emphasis on mimicking utero-placental physiology have improved the success of experimental models, bringing the technology closer to clinical translation. Here, we review the rationale for and history of AP and AW technology, discuss the challenges that needed to be overcome, and compare recent successful models. We conclude by outlining some remaining challenges to be addressed on the path towards clinical translation and opportunities for future research.
Collapse
Affiliation(s)
- Felix R De Bie
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marcus G Davey
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abby C Larson
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jan Deprest
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Alan W Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
McLeod JS, Church JT, Coughlin MA, Carr B, Poling C, Sarosi E, Perkins EM, Quinones MC, Hala P, Rabah R, Freiheit E, Rojas-Pena A, Bartlett RH, Mychaliska GB. Splenic development and injury in premature lambs supported by the artificial placenta. J Pediatr Surg 2019; 54:1147-1152. [PMID: 30902457 PMCID: PMC6545267 DOI: 10.1016/j.jpedsurg.2019.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/21/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The purpose of this study is to evaluate splenic effects during artificial placenta (AP) support. METHODS AP lambs (118-121 d, n = 14) were delivered and placed on the AP support for a goal of 10-14 days. Cannulation used right jugular drainage and umbilical vein reinfusion. Early (ETC; 115-120 d; n = 7) and late (LTC; 125-131 d; n = 7) tissue controls were delivered and immediately sacrificed. Spleens were formalin fixed, H&E stained, and graded for injury, response to inflammation, and extramedullary hematopoiesis (EMH). CD68 and CD163 stains were used to assess for macrophage activation and density. Clinical variables were correlated with splenic scores. Groups were compared using Fisher's Exact Test and descriptive statistics. p < 0.05 indicated significance. RESULTS Mean survival for AP lambs was 12 ± 5 d. There was no necrosis found in any of the groups. Vascular congestion and sinusoidal histiocytosis did not significantly differ between AP and control groups (p = 0.72; p = 0.311). There were significantly more pigmented macrophages (p = 0.008), CD163 (p = <0.001), and CD68 (p = <0.001) stained cells in the AP group. ETC and LTC demonstrated more EMH than AP spleens (p = <0.001). CONCLUSIONS During AP support, spleens appear to develop normally and exhibit an appropriate inflammatory response. After initiation of AP support, EMH transitions away from the spleen. STUDY TYPE Research Paper/Therapeutic Potential. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Jennifer S. McLeod
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Joseph T. Church
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Megan A. Coughlin
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Benjamin Carr
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Clinton Poling
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Ellery Sarosi
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | | | - Matias Caceres Quinones
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Pavel Hala
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Raja Rabah
- Department of Statistics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Alvaro Rojas-Pena
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Robert H Bartlett
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - George B. Mychaliska
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan,Fetal Diagnosis and Treatment Center, C.S. Mott Children’s Hospital, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|