1
|
Kato H, Iwahana T, Ono R, Okada S, Matsumiya G, Kobayashi Y. Hemodynamic parameters at rest predicting exercise capacity in patients supported with left ventricular assist device. J Artif Organs 2024; 27:7-14. [PMID: 36933087 DOI: 10.1007/s10047-023-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Left ventricular assist devices improve prognosis and quality of life, but exercise capacity remains limited in most patients after device implantation. Left ventricular assist device optimization through right heart catheterization reduces device-related complications. However, hemodynamic parameters associated with exercise capacity under optimized conditions. The aim of this study was to elucidate the predictors of exercise capacity from hemodynamic parameters at rest after left ventricular assist device optimization. We retrospectively reviewed 24 patients who underwent a ramp test with right heart catheterization, echocardiography and cardiopulmonary exercise testing more than 6 months after left ventricular assist device implantation. Pump speed was optimized to a lower setting that achieved right atrial pressure < 12 mmHg, pulmonary capillary wedge pressure < 18 mmHg, and cardiac index > 2.2 L/min/m2, then exercise capacity was assessed by cardiopulmonary exercise testing. After left ventricular assist device optimization, the mean right atrial pressure, pulmonary capillary wedge pressure, cardiac index, and peak oxygen consumption were 7 ± 5 mmHg, 10 ± 7 mmHg, 2.7 ± 0.5 L/min/m2, and 13.2 ± 3.0 mL/min/kg, respectively. Pulse pressure, stroke volume, right atrial pressure, mean pulmonary artery pressure, and pulmonary capillary wedge pressure were significantly associated with peak oxygen consumption. Multivariate linear regression analysis of factors predicting peak oxygen consumption revealed that pulse pressure, right atrial pressure, and aortic insufficiency remained independent predictors (β = 0.401, p = 0.007; β = - 0.558, p < 0.001; β = - 0.369, p = 0.010, respectively). Our findings suggests that cardiac reserve, volume status, right ventricular function, and aortic insufficiency predict exercise capacity in patients with a left ventricular assist device.
Collapse
Affiliation(s)
- Hirotoshi Kato
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan.
| | - Togo Iwahana
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| | - Ryohei Ono
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| |
Collapse
|
2
|
(Physiology of Continuous-flow Left Ventricular Assist Device Therapy. Translation of the document prepared by the Czech Society of Cardiology). COR ET VASA 2022. [DOI: 10.33678/cor.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Rosenbaum AN, Antaki JF, Behfar A, Villavicencio MA, Stulak J, Kushwaha SS. Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021; 12:2731-2767. [PMID: 34964115 DOI: 10.1002/cphy.c210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Fresiello L, Gross C, Jacobs S. Exercise physiology in left ventricular assist device patients: insights from hemodynamic simulations. Ann Cardiothorac Surg 2021; 10:339-352. [PMID: 34159115 DOI: 10.21037/acs-2020-cfmcs-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Left ventricular assist devices (LVADs) assure longer survival to patients, but exercise capacity is limited compared to normal values. Overall, LVAD patients show high wedge pressure and low cardiac output during maximal exercise, a phenomenon hinting at the need for increased LVAD support. Clinical studies investigating the hemodynamic benefits of an LVAD speed increase during exercise, ended in inhomogeneous and sometimes contradictory results. The native ventricle-LVAD interaction changes between rest and exercise, and this evolution is complex, multifactorial and patient-specific. The aim of this paper is to provide a comprehensive overview on the patient-LVAD interaction during exercise and to delineate possible therapeutic strategies for the future. A computational cardiorespiratory model was used to simulate the hemodynamics of peak bicycle exercise in LVAD patients. The simulator included the main cardiovascular and respiratory impairments commonly observed in LVAD patients, so as to represent an average hemodynamic response to exercise. In addition, other exercise responses were simulated, by tuning the chronotropic, inotropic and vascular functions, and implementing aortic regurgitation and stenosis in the simulator. These profiles were tested under different LVAD speeds and LVAD pressure-flow characteristics. Simulations output showed consistency with clinical data from the literature. The simulator allowed the working condition of the assisted ventricle at exercise to be investigated, clarifying the reasons behind the high wedge pressure and poor cardiac output observed in the clinics. Patients with poorer inotropic, chronotropic and vascular functions, are likely to benefit more from an LVAD speed increase during exercise. Similarly, for these patients, a flatter LVAD pressure-flow characteristic can assure better hemodynamic support under physical exertion. Overall, the study evidenced the need for a patient-specific approach on supporting exercise hemodynamics. In this frame, a complex simulator can constitute a valuable tool to define and test personalized speed control algorithms and strategies.
Collapse
Affiliation(s)
- Libera Fresiello
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Christoph Gross
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Steven Jacobs
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Felix SEA, Oerlemans MIF, Ramjankhan FZ, Muller SA, Kirkels HH, van Laake LW, Suyker WJL, Asselbergs FW, de Jonge N. One year improvement of exercise capacity in patients with mechanical circulatory support as bridge to transplantation. ESC Heart Fail 2021; 8:1796-1805. [PMID: 33710786 PMCID: PMC8120393 DOI: 10.1002/ehf2.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS Mechanical circulatory support (MCS) results in substantial improvement of prognosis and functional capacity. Currently, duration of MCS as a bridge to transplantation (BTT) is often prolonged due to shortage of donor hearts. Because long-term results of exercise capacity after MCS are largely unknown, we studied serial cardiopulmonary exercise tests (CPETs) during the first year after MCS implantation. METHODS AND RESULTS Cardiopulmonary exercise tests at 6 and 12 months after MCS implantation in BTT patients were retrospectively analysed, including clinical factors related to exercise capacity. A total of 105 MCS patients (67% male, 50 ± 12 years) underwent serial CPET at 6 and 12 months after implantation. Power (105 ± 35 to 114 ± 40 W; P ≤ 0.001) and peak VO2 per kilogram (pVO2/kg) improved significantly (16.5 ± 5.0 to 17.2 ± 5.5 mL/kg/min (P = 0.008)). Improvement in pVO2 between 6 and 12 months after LVAD implantation was not related to heart failure aetiology or haemodynamic severity prior to MCS. We identified maximal heart rate at exercise as an important factor for pVO2. Younger age and lower BMI were related to further improvement. At 12 months, 25 (24%) patients had a normal exercise capacity (Weber classification A, pVO2 > 20 mL/kg/min). CONCLUSIONS Exercise capacity (power and pVO2) increased significantly between 6 and 12 months after MCS independent of Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profile or heart failure aetiology. Heart rate at exercise importantly relates to exercise capacity. This long-term improvement in exercise capacity is important information for the growing group of long-term MCS patients as this is critical for the quality of life of patients.
Collapse
Affiliation(s)
- Susanne E A Felix
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Martinus I F Oerlemans
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Faiz Z Ramjankhan
- Department of Cardiothoracic Surgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Steven A Muller
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | - Linda W van Laake
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Willem J L Suyker
- Department of Cardiothoracic Surgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.,Institute of Health Informatics and Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
6
|
Dridi NP, Vishram-Nielsen JKK, Gustafsson F. Exercise Tolerance in Patients Treated With a Durable Left Ventricular Assist Device: Importance of Myocardial Recovery. J Card Fail 2020; 27:486-493. [PMID: 33347995 DOI: 10.1016/j.cardfail.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
The number of patients supported with left ventricular assist devices (LVADs) is growing and support times are increasing. This has led to a greater focus on functional capacity of these patients. LVADs greatly improve heart failure symptoms, but surprisingly, improvement in peak oxygen uptake (pVO2) is small and remains decreased at approximately 50% of normal values. Inadequate increase in cardiac output during exercise is the main responsible factor for the low pVO2 in LVAD recipients. Some patients experience LV recovery during mechanical unloading and these patients have a higher pVO2. Here we review the various components determining exercise cardiac output in LVAD recipients and discuss the potential impact of cardiac recovery on these components. LV recovery may affect several components, leading to improved hemodynamics during exercise and, in turn, physical capacity in patients with advanced heart failure undergoing LVAD implantation.
Collapse
Affiliation(s)
- Nadia Paarup Dridi
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Mirza KK, Gustafsson F. Determinants of Functional Capacity and Quality of Life After Implantation of a Durable Left Ventricular Assist Device. Card Fail Rev 2020; 6:e29. [PMID: 33133643 PMCID: PMC7592460 DOI: 10.15420/cfr.2020.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous-flow left ventricular assist devices (LVAD) are increasingly used as destination therapy in patients with end-stage heart failure and, with recent improvements in pump design, adverse event rates are decreasing. Implanted patients experience improved survival, quality of life (QoL) and functional capacity (FC). However, improvement in FC and QoL after implantation is not unequivocal, and this has implications for patient selection and preimplantation discussions with patients and relatives. This article identifies preimplantation predictors of lack of improvement in FC and QoL after continuous-flow LVAD implantation and discusses potential mechanisms, allowing for the identification of potential factors that can be modified. In particular, the pathophysiology behind insufficient improvement in peak oxygen uptake is discussed. Data are included from 40 studies, resulting in analysis of >700 exercise tests. Mean peak oxygen uptake was 13.4 ml/kg/min (equivalent to 48% of predicted value; 259 days after implantation, range 31–1,017 days) and mean 6-minute walk test distance was 370 m (182 days after implantation, range 43–543 days). Finally, the interplay between improvement in FC and QoL is discussed.
Collapse
Affiliation(s)
- Kiran K Mirza
- Department of Cardiology, Rigshospitalet Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet Copenhagen, Denmark
| |
Collapse
|
8
|
Gustafsson F, Mirza KK, Pya Y, Shaw S, Diegeler A, Netuka I, Lavee J, Garbade J, Morshuis M, Heatley J, Saeed D, Potapov E, Schmitto JD, Zimpfer D. Predictors of Physical Capacity 6 Months After Implantation of a Full Magnetically Levitated Left Ventricular Assist Device: An Analysis From the ELEVATE Registry. J Card Fail 2020; 26:580-587. [PMID: 32417377 DOI: 10.1016/j.cardfail.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND In patients with a continuous-flow left ventricular assist device, preimplant predictors of poor physical performance are not well-described. We aimed to identify predictors of inability to walk more than 300 m on 6-minute walk test (6MWT) 6 months after HeartMate 3 implantation. METHODS AND RESULTS Using data from the European Registry of Patients Implanted With a Full Magnetically Levitated LVAD, patients with available 6MWT at 6 months after implantation were included (N = 194) and grouped according to 6MWT distance (6MWD) of >300 m (n = 150) or 6MWD of <300 m (n = 44). Patients walking <300 m were older (60 ± 10 vs 52 ± 12 years; P < .001), more often New York Heart Association functional class IV (63% vs 42%; P = .03), and more often had type 2 diabetes (43% vs 17%; P < .001) at implantation. Atrial fibrillation was seen in 57% in those with a 6MWT of <300 m vs 31% in those walking longer (P < .002). Further, hemoglobin and estimated glomerular filtration rate was lower in those walking <300 m (both P < .01). In multivariable regression analysis, independent predictors of a 6MWD of <300 m were: atrial fibrillation (odds ratio [OR], 3.22; 95% confidence interval [CI], 1.12-8.67), older age (OR for 10-year increment, 2.81; 95% CI, 1.55-5.07), New York Heart Association functional class IV (OR, 3.37; 95% CI, 1.27-8.98), and Interagency Registry for Mechanically Assisted Circulatory Support profile 1 or 2 (OR, 6.53; 95% CI, 1.92-22.19). CONCLUSIONS Six months after HeartMate 3 implantation, 77% of patients walked >300 meters in 6 minutes. Apart from age and measures of heart failure severity, atrial fibrillation at implantation is an independent predictor of low 6MWD at 6 months after implantation.
Collapse
Affiliation(s)
- Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark.
| | - Kiran K Mirza
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Yuri Pya
- National Research Center for Cardiac Surgery, Astana, Kazakhstan
| | - Steven Shaw
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, UK
| | - Anno Diegeler
- Herzchirurgie, Herz- und Gefäßklinik Bad Neustadt, Bad Neustadt, Germany
| | - Ivan Netuka
- Herzchirurgie, Herz- und Gefäßklinik Bad Neustadt, Bad Neustadt, Germany
| | - Jacob Lavee
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jens Garbade
- Heart Transplantation Unit, Leviev Heart Center, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michiel Morshuis
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Jerry Heatley
- Department of Cardiothoracic Surgery, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | | | - Evgenij Potapov
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany; Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jan D Schmitto
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Daniel Zimpfer
- Department of Surgery, Division of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
9
|
Exercise Capacity in Mechanically Supported Advanced Heart Failure Patients: It Is All About the Beat. ASAIO J 2020; 66:339-342. [DOI: 10.1097/mat.0000000000001164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Koshy A, Green T, Toms A, Cassidy S, Schueler S, Jakovljevic D, MacGowan GA. The role of exercise hemodynamics in assessing patients with chronic heart failure and left ventricular assist devices. Expert Rev Med Devices 2019; 16:891-898. [PMID: 31584302 DOI: 10.1080/17434440.2019.1675506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Chronic heart failure is characterized by reduced exercise capacity. Invasive exercise hemodynamics are not routinely performed unless patients undergo transplant or left ventricular assist devices (LVAD) assessment, though now with readily available noninvasive devices, exercise hemodynamics are easily obtained. Our contention is that this is a valuable opportunity to acquire a more accurate measure of cardiac status in heart failure. Exercise hemodynamic measures such as cardiac power output can be carried out cheaply and effectively. Recent studies have highlighted the added value of exercise hemodynamics in prognostication of heart failure, and their role in assessing myocardial recovery in LVADs. Areas covered: In this review, we explore the literature available on Medline until 2019 focusing on resting and exercise hemodynamics alongside the methods of assessment (invasive and noninvasive) in heart failure with reduced ejection fraction and patients with implanted LVADs. Expert opinion: Hemodynamics measured both at rest and exercise are expected to play a significant role in the work up of transplant and LVAD patients. Furthermore, there is the potential to utilize noninvasive assessment in a complimentary fashion to support patient selection and improve the monitoring of response to treatment across the full cohort of heart failure patients.
Collapse
Affiliation(s)
- Aaron Koshy
- Institute of Cellular and Genetic Medicine, Cardiovascular Research Centre, Faculty of Medical Sciences, Newcastle University, and Newcastle upon Tyne Hospitals , Newcastle upon Tyne , UK
| | - Thomas Green
- Cardiothoracic Centre, Freeman Hospital , Newcastle upon Tyne , UK
| | - Anet Toms
- Institute of Cellular and Genetic Medicine, Cardiovascular Research Centre, Faculty of Medical Sciences, Newcastle University, and Newcastle upon Tyne Hospitals , Newcastle upon Tyne , UK
| | - Sophie Cassidy
- Institute of Cellular and Genetic Medicine, Cardiovascular Research Centre, Faculty of Medical Sciences, Newcastle University, and Newcastle upon Tyne Hospitals , Newcastle upon Tyne , UK
| | - Stephan Schueler
- Cardiothoracic Centre, Freeman Hospital , Newcastle upon Tyne , UK
| | | | - Guy A MacGowan
- Institute of Cellular and Genetic Medicine, Cardiovascular Research Centre, Faculty of Medical Sciences, Newcastle University, and Newcastle upon Tyne Hospitals , Newcastle upon Tyne , UK.,Cardiothoracic Centre, Freeman Hospital , Newcastle upon Tyne , UK
| |
Collapse
|
11
|
Hanff TC, Birati EY. Left Ventricular Assist Device as Destination Therapy: a State of the Science and Art of Long-Term Mechanical Circulatory Support. Curr Heart Fail Rep 2019; 16:168-179. [PMID: 31631240 DOI: 10.1007/s11897-019-00438-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to synthesize and summarize recent developments in the care of patients with end-stage heart failure being managed with a left ventricular assist device (LVAD) as destination therapy. RECENT FINDINGS Although the survival of patients treated with LVAD continues to improve, the rates of LVAD-associated complication, such as right ventricular failure, bleeding complications, and major infection, remain high, and management of these patients remains challenging. The durability and hemocompatibility of LVAD support have greatly increased in recent years as a result of new technologies and novel management strategies. Challenges remain in the comprehensive care of patients with destination therapy LVADs, including management of comorbidities and optimizing patient function and quality of life.
Collapse
Affiliation(s)
- Thomas C Hanff
- Department of Medicine Cardiovascular Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edo Y Birati
- Department of Medicine Cardiovascular Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|