1
|
Abbasnezhad N, Bakir F. Effect of Blade Thickness on Hemodynamics and Hemolysis: A Case Study of Pediatric Centrifugal Blood Pumps. J Biomech Eng 2025; 147:021001. [PMID: 39468930 DOI: 10.1115/1.4067009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Blood pumps, critical components in ventricular assist devices and extracorporeal membrane oxygenation systems, are primarily evaluated based on their ability to minimize blood damage through optimized design. Despite extensive research, the impact of impeller blade thickness and the proximity of rotating and stationary surfaces remains insufficiently explored. This study presents a comprehensive analysis, combining experimentally validated numerical simulations with an advanced Lagrangian approach, to compare the hemodynamic and hemolytic performance of three centrifugal pumps. These pumps share identical volutes but differ in impeller blade thickness. The selected operating point-a blood flow rate of 1 l/min and a pressure differential of 60 mm Hg-was chosen for its clinical relevance, particularly in pediatric applications. Computational fluid dynamics (CFD) simulations were employed to evaluate hemodynamic performance, while Lagrangian postprocessing was used to estimate the hemolysis index (HI) by tracing fluid particle trajectories. These analyses provided detailed insights into velocity, pressure, and shear stress (SS) distributions, with special attention given to critical regions near clearance gaps and solid boundaries. The results reveal a significant increase in hemolysis risk in these regions, especially as the size of opposing rotating and stationary surfaces increases. The pump with the thickest blades (pump 3) exhibited the poorest performance, with shear stress and hemolysis index negatively impacted by the increased blade thickness. Although specific to the pumps studied, these findings offer valuable guidance for the optimal design of blood pumps and suggest that the analytical approach could be applied to other sensitivity studies.
Collapse
Affiliation(s)
| | - Farid Bakir
- Arts et Métiers Institute of Technology, CNAM, LIFSE, Paris F-75013, France
| |
Collapse
|
2
|
Li Y, Xi Y, Wang H, Sun A, Wang L, Deng X, Chen Z, Fan Y. Development and validation of a mathematical model for evaluating shear-induced damage of von Willebrand factor. Comput Biol Med 2023; 164:107379. [PMID: 37597407 DOI: 10.1016/j.compbiomed.2023.107379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE To develop a mathematical model for predicting shear-induced von Willebrand factor (vWF) function modification which can be used to guide ventricular assist devices (VADs) design, and evaluate the damage of high molecular weight multimers (HMWM)-vWF in VAD patients for reducing clinical complications. METHODS Mathematical models were constructed based on three morphological variations (globular vWF, unfolded vWF and degraded vWF) of vWF under shear stress conditions, in which parameters were obtained from previous studies or fitted by experimental data. Different clinical support modes (pediatric vs. adult mode), different VAD operating states (pulsation vs. constant mode) and different clinical VADs (HeartMate II, HeartWare and CentriMag) were utilized to analyze shear-induced damage of HMWM-vWF based on our vWF model. The accuracy and feasibility of the models were evaluated using various experimental and clinical cases, and the biomechanical mechanisms of HMWM-vWF degradation induced by VADs were further explained. RESULTS The mathematical model developed in this study predicted VAD-induced HMWM-vWF degradation with high accuracy (correlation with experimental data r2 > 0.99). The numerical results showed that VAD in the pediatric mode resulted in more HMWM-vWF degradation per unit time and per unit flow rate than in the adult mode. However, the total degradation of HMWM-vWF is less in the pediatric mode than in the adult mode because the pediatric mode has fewer times of blood circulation than the adult mode in the same amount of time. The ratio of HMWM-vWF degradation was lower in the pulsation mode than in the constant mode. This is due to the increased flushing of VADs in the pulsation mode, which avoids prolonged stagnation of blood in high shear regions. This study also found that the design feature, rotor size and volume of the VADs, and the superimposed regions of high shear stress and long residence time inside VADs affect the degradation of HMWM-vWF. The axial flow VADs (HeartMate II) showed higher degradation of HMWM-vWF compared to centrifugal VADs (HeartWare and CentriMag). Compared to fully magnetically suspended VADs (CentriMag), hydrodynamic suspended VADs (HeartWare) produced extremely high degradation of HWMW-vWF in its narrow hydrodynamic clearance. Finally, the study used a mathematical model of HMWM-vWF degradation to interpret the clinical statistics from a biomechanical perspective and found that minimizing the rotating speed of VADs within reasonable limits helps to reduce HWMW-vWF degradation. All predicted conclusions are supported by the experimental and clinical data. CONCLUSION This study provides a validated mathematical model to assess the shear-induced degradation of HMWM-vWF, which can help to evaluate the damage of HMWM-vWF in patients implanted with VADs for reducing clinical complications, and to guide the optimization of VADs for improving hemocompatibility.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
3
|
Hemodynamic Evaluation of a Centrifugal Left Atrial Decompression Pump for Heart Failure with Preserved Ejection Fraction. Bioengineering (Basel) 2023; 10:bioengineering10030366. [PMID: 36978757 PMCID: PMC10044772 DOI: 10.3390/bioengineering10030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
This article discusses a new continuous flow mini pump that has been developed to improve symptoms and prognosis in patients with Heart Failure with Preserved Ejection Fraction (HFpEF), for which there are currently no established treatments. The pump is designed to discharge a reduced percentage of blood volume from the left atrium to the subclavian artery, clamped at the bifurcation with the aortic arch. The overall specifications, design parameters, and hemodynamics of this new device are discussed, along with data from in vitro circulation loop tests and numerical simulations. The article also compares the results for two configurations of the pump with respect to key indicators of hemocompatibility used in blood pump development.
Collapse
|
4
|
Palazzolo T, Hirschhorn M, Garven E, Day S, Stevens RM, Rossano J, Tchantchaleishvili V, Throckmorton AL. Technology Landscape of Pediatric Mechanical Circulatory Support Devices- A Systematic Review 2010-2021. Artif Organs 2022; 46:1475-1490. [PMID: 35357020 PMCID: PMC9256769 DOI: 10.1111/aor.14242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mechanical circulatory support (MCS) devices, such as ventricular assist devices (VADs) and total artificial hearts (TAHs), have become a vital therapeutic option in the treatment of end-stage heart failure for adult patients. Such therapeutic options continue to be limited for pediatric patients. Clinicians initially adapted or scaled existing adult devices for pediatric patients; however, these adult devices are not designed to support the anatomical structure and varying flow capacities required for this population and are generally operated "off-design", which risks complications such as hemolysis and thrombosis. Devices designed specifically for the pediatric population that seek to address these shortcomings are now emerging and gaining FDA approval. METHODS To analyze the competitive landscape of pediatric MCS devices, we conducted a systematic literature review. Approximately 27 devices were studied in detail: 8 were established or previously approved designs, and 19 were under development (11 VADs, 5 Fontan assist devices, and 3 TAHs). RESULTS Despite significant progress, there is still no pediatric pump technology that satisfies the unique and distinct design constraints and requirements to support pediatric patients, including the wide range of patient sizes, increased cardiovascular demand with growth, and anatomic and physiologic heterogeneity of congenital heart disease. CONCLUSIONS Forward-thinking design solutions are required to overcome these challenges and to ensure the translation of new therapeutic MCS devices for pediatric patients.
Collapse
Affiliation(s)
- Thomas Palazzolo
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Matthew Hirschhorn
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Ellen Garven
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Steven Day
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Randy M Stevens
- College of Medicine, St. Christopher's Hospital for Children, Drexel University, Philadelphia, PA, USA
| | - Joseph Rossano
- Division of Pediatric Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vakhtang Tchantchaleishvili
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amy L Throckmorton
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
5
|
von Petersdorff-Campen K, Schmid Daners M. Hemolysis Testing In Vitro: A Review of Challenges and Potential Improvements. ASAIO J 2022; 68:3-13. [PMID: 33989208 DOI: 10.1097/mat.0000000000001454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many medical devices such as cardiopulmonary bypass systems, mechanical heart valves, or ventricular assist devices are intended to come into contact with blood flow during use. In vitro hemolysis testing can provide valuable information about the hemocompatibility of prototypes and thus help reduce the number of animal experiments required. Such tests play an important role as research and development tools for objective comparisons of prototypes and devices as well as for the extrapolation of their results to clinical outcomes. Therefore, it is important to explore and provide new ways to improve current practices. In this article, the main challenges of hemolysis testing are described, namely the difficult blood sourcing, the high experimental workload, and the low reproducibility of test results. Several approaches to address the challenges identified are proposed and the respective literature is reviewed. These include the replacement of blood as the "shear-sensitive fluid" by alternative test fluids, the replacement of sparse, manual sampling and blood damage assessment by a continuous and automated monitoring, as well as an analysis of categories and causes of variability in hemolysis test results that may serve as a structural template for future studies.
Collapse
Affiliation(s)
- Kai von Petersdorff-Campen
- From the Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Chan CHH, Simmonds MJ, Fraser KH, Igarashi K, Ki KK, Murashige T, Joseph MT, Fraser JF, Tansley GD, Watanabe N. Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear. J Biomech 2021; 130:110898. [PMID: 34896790 DOI: 10.1016/j.jbiomech.2021.110898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Despite decades of technological advancements in blood-contacting medical devices, complications related to shear flow-induced blood trauma are still frequently observed in clinic. Blood trauma includes haemolysis, platelet activation, and degradation of High Molecular Weight von Willebrand Factor (HMW vWF) multimers, all of which are dependent on the exposure time and magnitude of shear stress. Specifically, accumulating evidence supports that when blood is exposed to shear stresses above a certain threshold, blood trauma ensues; however, it remains unclear how various constituents of blood are affected by discrete shears experimentally. The aim of this study was to expose blood to discrete shear stresses and evaluate blood trauma indices that reflect red cell, platelet, and vWF structure. Citrated human whole blood (n = 6) was collected and its haematocrit was adjusted to 30 ± 2% by adding either phosphate buffered saline (PBS) or polyvinylpyrrolidone (PVP). Viscosity of whole blood was adjusted to 3.0, 12.5, 22.5 and 37.5 mPa·s to yield stresses of 3, 6, 9, 12, 50, 90 and 150 Pa in a custom-developed shearing system. Blood samples were exposed to shear for 0, 300, 600 and 900 s. Haemolysis was measured using spectrophotometry, platelet activation using flow cytometry, and HMW vWF multimer degradation was quantified with gel electrophoresis and immunoblotting. For tolerance to 300, 600 and 900 s of exposure time, the critical threshold of haemolysis was reached after blood was exposed to 90 Pa for 600 s (P < 0.05), platelet activation and HMW vWF multimer degradation were 50 Pa for 600 s and 12 Pa for 300 s respectively (P < 0.05). Our experimental results provide simultaneous comparison of blood trauma indices and thus also the relation between shear duration and magnitude required to induce damage to red cells, platelets, and vWF. Our results also demonstrate that near-physiological shear stress (<12 Pa) is needed in order to completely avoid any form of blood trauma. Therefore, there is an urgent need to design low shear-flow medical devices in order to avoid blood trauma in this blood-contacting medical device field.
Collapse
Affiliation(s)
- Chris H H Chan
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia.
| | - Michael J Simmonds
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Kosuke Igarashi
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Katrina K Ki
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Tomotaka Murashige
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Mary T Joseph
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia; School of Medicine, Griffith University, Queensland, Australia
| | - Geoff D Tansley
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nobuo Watanabe
- Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
7
|
Extracorporeal Membrane Oxygenation-Induced Hemolysis: An In Vitro Study to Appraise Causative Factors. MEMBRANES 2021; 11:membranes11050313. [PMID: 33923070 PMCID: PMC8145168 DOI: 10.3390/membranes11050313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
In vitro hemolysis testing is commonly used to determine hemocompatibility of ExtraCorporeal Membrane Oxygenation (ECMO). However, poor reproducibility remains a challenging problem, due to several unidentified influencing factors. The present study investigated potential factors, such as flow rates, the use of anticoagulants, and gender of blood donors, which could play a role in hemolysis. Fresh human whole blood was anticoagulated with either citrate (n = 6) or heparin (n = 12; 6 female and 6 male blood donors). Blood was then circulated for 360 min at 4 L/min or 1.5 L/min. Regardless of flow rate conditions, hemolysis remained unchanged over time in citrated blood, but significantly increased after 240 min circulation in heparinized blood (p ≤ 0.01). The ratio of the normalized index of hemolysis (NIH) of heparinized blood to citrated blood was 11.7-fold higher at 4 L/min and 16.5–fold higher at 1.5 L/min. The difference in hemolysis between 1.5 L/min and 4 L/min concurred with findings of previous literature. In addition, the ratio of NIH of male heparinized blood to female was 1.7-fold higher at 4 L/min and 2.2-fold higher at 1.5 L/min. Our preliminary results suggested that the choice of anticoagulant and blood donor gender could be critical factors in hemolysis studies, and should be taken into account to improve testing reliability during ECMO.
Collapse
|