1
|
Ferguson AM, Lin AC. Themes, Rates, and Risk of Adverse Events of the Artificial Pancreas in the United States Using MAUDE. Ann Biomed Eng 2024; 52:2282-2286. [PMID: 38740730 PMCID: PMC11247049 DOI: 10.1007/s10439-024-03529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Three manufacturers sell artificial pancreas systems in the United States for management of Type 1 Diabetes. Given the life-saving task required of an artificial pancreas there needs to be a high level of trust and safety in the devices. This evaluation sought to find the adjusted safety event reporting rate and themes along with device-associated risk in events reported utilizing the MAUDE database. We searched device names in the MAUDE database over the period from 2016 until August 2023 (the date of retrieval). Thematic analysis was performed using dual-reviewer examination with a 96% concurrence. Relative risk (RR) was calculated for injury, malfunction, and overall, for each manufacturer, as well as adjusted event rate per manufacturer. Most events reported related to defects in the manufacturing of the casing materials which resulted in non-delivery of therapy. Tandem Diabetes Care, Inc. had an adjusted event rate of 50 per 100,000 units and RR of 0.0225. Insulet had an adjusted event rate of 300 per 100,000 units and RR of 0.1684. Medtronic has an adjusted event rate of 2771.43 per 100,000 units and RR of 20.7857. The newer Medtronic devices show improvements in likely event rate. While the artificial pancreas is still in its infancy, these event rates are not at an acceptable level for a device which can precipitate death from malfunctions. Further exploration into safety events and much more research and development is needed for devices to reduce the event rates. Improved manufacturing practices, especially the casing materials, are highly recommended. The artificial pancreas holds promise for millions but must be improved before it becomes a true life-saving device that it has the potential to become.
Collapse
Affiliation(s)
- Andrew M Ferguson
- University of Cincinnati College of Medicine, Cincinnati, USA.
- University of Cincinnati College of Pharmacy, Cincinnati, USA.
| | - Alex C Lin
- University of Cincinnati College of Pharmacy, Cincinnati, USA
| |
Collapse
|
2
|
Thom RL, Cronin AJ. Legal and Regulatory Challenges for Emerging Regenerative Medicine Solutions for Diabetes. Transplantation 2024; 108:1072-1079. [PMID: 37749797 PMCID: PMC11042516 DOI: 10.1097/tp.0000000000004797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023]
Abstract
Regenerative medicine solutions for type 1 diabetes are a rapidly developing field of medical technology. To date, these solutions have been principally cell-based treatments and at present, in Europe, these therapies are regulated under European Union regulations for advanced therapy medicinal products. But now, new emerging technology combining cellular therapy with medical devices is under development. The potential of this novel hybrid model to create a bioartificial pancreas to treat type 1 diabetes is tantalizing. However, incorporating medical devices creates a further layer of regulatory complexity. This article seeks to expose the complexity of this legal and regulatory landscape and demonstrate how evolving technology could challenge the entire existing legal paradigm. We start by summarizing the status of the only established cell-based therapy-transplantation. We set out the regulation of cellular therapies, their classification, and the role of statutory bodies. We examine the bottleneck of therapies moving from bench to bedside, and we consider the additional challenges of products, which use a combination of cells and medical devices. Finally, we argue that for the potential of this rapidly growing area of technology to be realized a seismic shift in how we regulate frontier cellular therapies will be required.
Collapse
Affiliation(s)
- Rebecca L. Thom
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, King’s College London, London, United Kingdom
- Nephrology and Transplantation Centre, Guy’s and St Thomas’ Hospital NHS Trust, London, United Kingdom
| | - Antonia J. Cronin
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, King’s College London, London, United Kingdom
- Nephrology and Transplantation Centre, Guy’s and St Thomas’ Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Barillaro M, Schuurman M, Wang R. β1-Integrin-A Key Player in Controlling Pancreatic Beta-Cell Insulin Secretion via Interplay With SNARE Proteins. Endocrinology 2022; 164:6772824. [PMID: 36282882 DOI: 10.1210/endocr/bqac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/16/2023]
Abstract
Shortcomings in cell-based therapies for patients with diabetes have been revealed to be, in part, a result of an improper extracellular matrix (ECM) environment. In vivo, pancreatic islets are emersed in a diverse ECM that provides physical support and is crucial for healthy function. β1-Integrin receptors have been determined to be responsible for modulation of beneficial interactions with ECM proteins influencing beta-cell development, proliferation, maturation, and function. β1-Integrin signaling has been demonstrated to augment insulin secretion by impacting the actin cytoskeleton via activation of focal adhesion kinase and downstream signaling pathways. In other secretory cells, evidence of a bidirectional relationship between integrins and exocytotic machinery has been demonstrated, and, thus, this relationship could be present in pancreatic beta cells. In this review, we will discuss the role of ECM-β1-integrin interplay with exocytotic proteins in controlling pancreatic beta-cell insulin secretion through their dynamic and unique signaling pathway.
Collapse
Affiliation(s)
- Malina Barillaro
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Meg Schuurman
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Medicine, University of Western Ontario, London, ON N6C 2V5, Canada
| |
Collapse
|
6
|
Whyte W, Goswami D, Wang SX, Fan Y, Ward NA, Levey RE, Beatty R, Robinson ST, Sheppard D, O'Connor R, Monahan DS, Trask L, Mendez KL, Varela CE, Horvath MA, Wylie R, O'Dwyer J, Domingo-Lopez DA, Rothman AS, Duffy GP, Dolan EB, Roche ET. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat Commun 2022; 13:4496. [PMID: 35922421 PMCID: PMC9349266 DOI: 10.1038/s41467-022-32147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes. Drug delivery implants suffer from diminished release profiles due to fibrous capsule formation over time. Here, the authors use soft robotic actuation to modulate the immune response of the host to maintain drug delivery over the longer-term and to perform controlled release in vivo.
Collapse
Affiliation(s)
- William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niamh A Ward
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Scott T Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Declan Sheppard
- Department of Radiology, University Hospital, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - David S Monahan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Lesley Trask
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Keegan L Mendez
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Claudia E Varela
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Markus A Horvath
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Arielle S Rothman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear B Dolan
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Domingo-Lopez DA, Lattanzi G, H. J. Schreiber L, Wallace EJ, Wylie R, O'Sullivan J, Dolan EB, Duffy GP. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv Drug Deliv Rev 2022; 185:114280. [PMID: 35405298 DOI: 10.1016/j.addr.2022.114280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.
Collapse
|
8
|
Wassmer CH, Lebreton F, Bellofatto K, Perez L, Cottet-Dumoulin D, Andres A, Bosco D, Berney T, Othenin-Girard V, Martinez De Tejada B, Cohen M, Olgasi C, Follenzi A, Berishvili E. Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transpl Int 2022; 35:10214. [PMID: 35185372 PMCID: PMC8842259 DOI: 10.3389/ti.2021.10214] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Lack of rapid revascularization and inflammatory attacks at the site of transplantation contribute to impaired islet engraftment and suboptimal metabolic control after clinical islet transplantation. In order to overcome these limitations and enhance engraftment and revascularization, we have generated and transplanted pre-vascularized insulin-secreting organoids composed of rat islet cells, human amniotic epithelial cells (hAECs), and human umbilical vein endothelial cells (HUVECs). Our study demonstrates that pre-vascularized islet organoids exhibit enhanced in vitro function compared to native islets, and, most importantly, better engraftment and improved vascularization in vivo in a murine model. This is mainly due to cross-talk between hAECs, HUVECs and islet cells, mediated by the upregulation of genes promoting angiogenesis (vegf-a) and β cell function (glp-1r, pdx1). The possibility of adding a selected source of endothelial cells for the neo-vascularization of insulin-scereting grafts may also allow implementation of β cell replacement therapies in more favourable transplantation sites than the liver.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Lisa Perez
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Axel Andres
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Othenin-Girard
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Begoña Martinez De Tejada
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ekaterine Berishvili
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
- *Correspondence: Ekaterine Berishvili,
| | | |
Collapse
|
9
|
Ciechanowska A, Gora I, Sabalinska S, Foltynski P, Ladyzynski P. Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|