1
|
Aldehani W, Jawali A, Savaridas SL, Huang Z, Manfredi L. Tissue-Mimicking Materials for Breast Ultrasound Elastography Phantoms: A Systematic Review. Polymers (Basel) 2025; 17:521. [PMID: 40006182 PMCID: PMC11858894 DOI: 10.3390/polym17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Breast ultrasound elastography phantoms are valued for their ability to mimic human tissue, enabling calibration for quality assurance and testing of imaging systems. Phantoms may facilitate the development and evaluation of ultrasound techniques by accurately simulating the properties of breasts. However, selecting appropriate tissue-mimicking materials for realistic and accurate ultrasound exams is crucial to ensure the ultrasound system responds similarly to real breast tissue. We conducted a systematic review of the PubMed, Scopes, Embase, and Web of Sciences databases, identifying 928 articles in the initial search, of which 19 were selected for further evaluation based on our inclusion criteria. The chosen article focused on tissue-mimicking materials in breast ultrasound elastography phantom fabrication, providing detailed information on the fabrication process, the materials used, and ultrasound and elastography validation of phantoms. The phantoms fabricated from Polyvinyl Chloride Plastisol, silicon, and paraffin were best suited for mimicking breast, fatty, glandular, and parenchyma tissues. Adding scatterers to these materials facilitates accurate fatty and glandular breast tissue simulations, making them ideal for ultrasound quality assurance and elastography training. Future research should focus on developing more realistic phantoms for advanced medical training, improving the practice of difficult procedures, enhancing breast cancer detection research, and providing tailored tissue characteristics.
Collapse
Affiliation(s)
- Wadhhah Aldehani
- Division of Respiratory Medicine and Gastroenterology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK;
| | - Adel Jawali
- Division of Respiratory Medicine and Gastroenterology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK;
| | - Sarah Louise Savaridas
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK;
| | - Zhihong Huang
- School of Physics and Engineering Technology, University of York, York YO10 5DD, UK;
| | - Luigi Manfredi
- Division of Respiratory Medicine and Gastroenterology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
2
|
Hariyanto AP, Mugni FF, Khumaira L, Sensusiati AD, Nursela AL, Suprijanto, Ng KH, Haryanto F, Endarko. Fabrication and evaluation of breast tissue equivalent phantoms for image quality assessment in ultrasound imaging. Radiography (Lond) 2025; 31:254-263. [PMID: 39667263 DOI: 10.1016/j.radi.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Phantom materials with tissue-equivalent physical properties that require regular evaluation using patented phantoms are essential for medical device quality assurance programs. This study evaluated phantom materials for tissue equivalence and their use in image quality assessment for breast ultrasound scanner performance testing using two custom-made phantoms. METHODS Two types of phantoms were developed: phantoms A and B. Phantom A was made from a base material consisting of polyvinyl chloride-plastisol with the addition of glycerol, whereas phantom B consisted of polyvinyl chloride-plastisol with the addition of graphite. Each phantom had a stiff and soft lesion shaped like a sphere, with a diameter of 1.4 cm. The phantoms were cuboids with dimensions of 10 × 10 cm2 and a thickness of 5 cm. A series of phantom evaluations was performed, consisting of density, elasticity, acoustic properties, B-mode ultrasound images, and strain ratio. RESULTS The characterisation results show that background A closely resembles fibroglandular tissue in terms of density and acoustic properties (<5% variation); background B only resembles fibroglandular tissue in terms of density (-1.8% variation). In terms of elasticity, both backgrounds were close to the minimum value of fibroglandular tissue elasticity. The soft lesion on the phantom had a slightly lower density and elasticity than the carcinoma, whereas its acoustic properties (speed of sound and attenuation coefficient) were slightly higher than those of the reference carcinoma. Both phantoms were consistent with the literature in terms of strain ratio, geometric accuracy, lesion detection, and mean pixel value and showed good potential stability over one year. CONCLUSION This study successfully described the fabrication and evaluation sequence of a phantom equivalent to breast fibroglandular tissue and its evaluation via ultrasound imaging. IMPLICATIONS FOR PRACTICE This study offers proprietary information essential for the fabrication of phantoms that can be used for quality assurance and control in ultrasound imaging.
Collapse
Affiliation(s)
- A P Hariyanto
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia
| | - F F Mugni
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia
| | - L Khumaira
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia
| | - A D Sensusiati
- Department of Radiology, Universitas Airlangga Hospital, Surabaya 60115, East Java, Indonesia
| | - A L Nursela
- Radiology Installation, Gambiran General Hospital, Kediri, East Java, 64133, Indonesia
| | - Suprijanto
- Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha, 10, Labtek, 40132 Bandung, Indonesia
| | - K H Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - F Haryanto
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
| | - Endarko
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia.
| |
Collapse
|
3
|
Almashakbeh Y, Shamimi H, Callejas A, Rus G. Using torsional wave elastography to evaluate spring pot parameters in skin tumor mimicking phantoms. Sci Rep 2024; 14:16058. [PMID: 38992074 PMCID: PMC11239839 DOI: 10.1038/s41598-024-66621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Estimating the tissue parameters of skin tumors is crucial for diagnosis and effective therapy in dermatology and related fields. However, identifying the most sensitive biomarkers require an optimal rheological model for simulating skin behavior this remains an ongoing research endeavor. Additionally, the multi-layered structure of the skin introduces further complexity to this task. In order to surmount these challenges, an inverse problem methodology, in conjunction with signal analysis techniques, is being employed. In this study, a fractional rheological model is presented to enhance the precision of skin tissue parameter estimation from the acquired signal from torsional wave elastography technique (TWE) on skin tumor-mimicking phantoms for lab validation and the estimation of the thickness of the cancerous layer. An exhaustive analysis of the spring-pot model (SP) solved by the finite difference time domain (FDTD) is conducted. The results of experiments performed using a TWE probe designed and prototyped in the laboratory were validated against ultrafast imaging carried out by the Verasonics Research System. Twelve tissue-mimicking phantoms, which precisely simulated the characteristics of skin tissue, were prepared for our experimental setting. The experimental data from these bi-layer phantoms were measured using a TWE probe, and the parameters of the skin tissue were estimated using inverse problem-solving. The agreement between the two datasets was evaluated by comparing the experimental data obtained from the TWE technique with simulated data from the SP- FDTD model using Pearson correlation, dynamic time warping (DTW), and time-frequency representation. Our findings show that the SP-FDTD model and TWE are capable of determining the mechanical properties of both layers in a bilayer phantom, using a single signal and an inverse problem approach. The ultrafast imaging and the validation of TWE results further demonstrate the robustness and reliability of our technology for a realistic range of phantoms. This fusion of the SP-FDTD model and TWE, as well as inverse problem-solving methods has the potential to have a considerable impact on diagnoses and treatments in dermatology and related fields.
Collapse
Affiliation(s)
- Yousef Almashakbeh
- Department of Allied Engineering Sciences, Facility of Engineering, The Hashemite University, Zarqa, 13133, Jordan.
| | - Hirad Shamimi
- Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Callejas
- Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, 18012, Spain
- Excellence Research Unit, "Modelling Nature" (MNat), Granada, 18071, Spain
| | - Guillermo Rus
- Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, 18012, Spain
- Excellence Research Unit, "Modelling Nature" (MNat), Granada, 18071, Spain
| |
Collapse
|
4
|
Jawli A, Aldehani W, Nabi G, Huang Z. Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review. Bioengineering (Basel) 2024; 11:620. [PMID: 38927856 PMCID: PMC11200625 DOI: 10.3390/bioengineering11060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Medical imaging has allowed for significant advancements in the field of ultrasound procedures over the years. However, each imaging modality exhibits distinct limitations that differently affect their accuracy. It is imperative to ensure the quality of each modality to identify and eliminate these limitations. To achieve this, a tissue-mimicking material (TMM) phantom is utilised for validation. This study aims to perform a systematic analysis of tissue-mimicking materials used for creating ultrasound phantoms. We reviewed 234 studies on the use of TMM phantoms in ultrasound that were published from 2013 to 2023 from two research databases. Our focus was on studies that discussed TMMs' properties and fabrication for ultrasound, elastography, and flow phantoms. The screening process led to the selection of 16 out of 234 studies to include in the analysis. The TMM ultrasound phantoms were categorised into three groups based on the solvent used; each group offers a broad range of physical properties. The water-based material most closely aligns with the properties of ultrasound. This study provides important information about the materials used for ultrasound phantoms. We also compared these materials to real human tissues and found that PVA matches most of the human tissues the best.
Collapse
Affiliation(s)
- Adel Jawli
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Sulaibikhat 13001, Kuwait
| | - Wadhhah Aldehani
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Zhihong Huang
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
5
|
Seitzinger M, Gnatzy F, Kern S, Steinhausen R, Klammer J, Schlosser T, Blank V, Karlas T. Development, evaluation, and overview of standardized training phantoms for abdominal ultrasound-guided interventions. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2024; 45:176-183. [PMID: 38350630 DOI: 10.1055/a-2242-7074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
PURPOSE Ultrasound (US) represents the primary approach for abdominal diagnosis and is regularly used to guide diagnostic and therapeutic interventions (INVUS). Due to possible serious INVUS complications, structured training concepts are required. Phantoms can facilitate teaching, but their use is currently restricted by complex manufacturing and short durability of the materials. Hence, the aim of this study was the development and evaluation of an optimized abdominal INVUS phantom. MATERIALS AND METHODS Phantom requirements were defined in a structured research process: Skin-like surface texture, homogeneous matrix with realistic tissue properties, implementation of lesions and abscess cavities in different sizes and depths as well as a modular production process allowing for customized layouts. The phantom prototypes were evaluated in certified ultrasound courses. RESULTS In accordance with the defined specifications, a new type of matrix was developed and cast in multiple layers including different target materials. The phantom structure is based on features of liver anatomy and includes solid focal lesions, vessels, and abscess formations. For a realistic biopsy procedure, ultrasound-proof material was additionally included to imitate bone. The evaluation was performed by US novices (n=40) and experienced participants (n=41). The majority (73/81) confirmed realistic visualization of the lesions. The 3D impression was rated as "very good" in 64% of cases (52/81) and good in 31% (25/81). Overall, 86% (70/81) of the participants certified high clinical relevance of the phantom. CONCLUSION The presented INVUS phantom concept allows standardized and realistic training for interventions.
Collapse
Affiliation(s)
- Max Seitzinger
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| | - Franziska Gnatzy
- Department of Medicine II, St. Elisabeth Hospital, Leipzig, Germany
| | - Sabine Kern
- Forschungszentrum Ultraschall gGmbH, Research Center Ultrasound, Halle (Saale), Germany
| | - Ralf Steinhausen
- Forschungszentrum Ultraschall gGmbH, Research Center Ultrasound, Halle (Saale), Germany
| | - Jana Klammer
- Forschungszentrum Ultraschall gGmbH, Research Center Ultrasound, Halle (Saale), Germany
| | - Tobias Schlosser
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| | - Valentin Blank
- Division of Interdisciplinary Ultrasound; Department of Internal Medicine I (Gastroenterology, Pneumology), University Hospital Halle, Halle, Germany
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| |
Collapse
|
6
|
Karimpour P, Ferizoli R, May JM, Kyriacou PA. Customisable Silicone Vessels and Tissue Phantoms for In Vitro Photoplethysmography Investigations into Cardiovascular Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:1681. [PMID: 38475217 DOI: 10.3390/s24051681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
Age-related vessel deterioration leads to changes in the structure and function of the heart and blood vessels, notably stiffening of vessel walls, increasing the risk of developing cardiovascular disease (CVD), which accounts for 17.9 million global deaths annually. This study describes the fabrication of custom-made silicon vessels with varying mechanical properties (arterial stiffness). The primary objective of this study was to explore how changes in silicone formulations influenced vessel properties and their correlation with features extracted from signals obtained from photoplethysmography (PPG) reflectance sensors in an in vitro setting. Through alterations in the silicone formulations, it was found that it is possible to create elastomers exhibiting an elasticity range of 0.2 MPa to 1.22 MPa. It was observed that altering vessel elasticity significantly impacted PPG signal morphology, particularly reducing amplitude with increasing vessel stiffness (p < 0.001). A p-value of 5.176 × 10-15 and 1.831 × 10-14 was reported in the red and infrared signals, respectively. It has been concluded in this study that a femoral artery can be recreated using the silicone material, with the addition of a softener to achieve the required mechanical properties. This research lays the foundation for future studies to replicate healthy and unhealthy vascular systems. Additional pathologies can be introduced by carefully adjusting the elastomer materials or incorporating geometrical features consistent with various CVDs.
Collapse
Affiliation(s)
- Parmis Karimpour
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| | - Redjan Ferizoli
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| | - James M May
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| |
Collapse
|
7
|
Chen C, Huang Y, Chen P, Hsu Y, Jaw F, Ho M. Modification of gelatin and photocured
3D
‐printed resin to prepare biomimetic phantoms for ultrasound‐guided minimally invasive surgeries. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chien‐Hua Chen
- Department of Biomedical Engineering National Taiwan University Taipei City Taiwan
| | - Yi‐Fan Huang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
| | - Po‐Hao Chen
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
| | - Yu‐Tung Hsu
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
| | - Fu‐Shan Jaw
- Department of Biomedical Engineering National Taiwan University Taipei City Taiwan
| | - Ming‐Hua Ho
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
- R&D Center for Membrane Technology National Taiwan University of Science and Technology Taipei Taiwan
| |
Collapse
|
8
|
Armstrong SA, Jafary R, Forsythe JS, Gregory SD. Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:18-30. [PMID: 36210247 DOI: 10.1016/j.ultrasmedbio.2022.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound-guided needle interventions are common procedures in medicine, and tissue-mimicking phantoms are widely used for simulation training to bridge the gap between theory and clinical practice in a controlled environment. This review assesses tissue-mimicking materials from 24 studies as candidates for a high-fidelity ultrasound phantom, including methods for evaluating relevant acoustic and mechanical properties and to what extent the reported materials mimic the superficial layers of biological tissue. Speed of sound, acoustic attenuation, Young's modulus, hardness, needle interaction forces, training efficiency and material limitations were systematically evaluated. Although gelatin and agar have the closest acoustic values to tissue, mechanical properties are limited, and strict storage protocols must be employed to counteract dehydration and microbial growth. Polyvinyl chloride (PVC) has superior mechanical properties and is a suitable alternative if durability is desired and some ultrasound realism to human tissue may be sacrificed. Polyvinyl alcohol (PVA), while also requiring hydration, performs well across all categories. Furthermore, we propose a framework for the evaluation of future ultrasound-guided needle intervention tissue phantoms to increase the fidelity of training programs and thereby improve clinical performance.
Collapse
Affiliation(s)
- Sophie A Armstrong
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Rezan Jafary
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Shaun D Gregory
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|