1
|
Spencer BL, Wilhelm SK, Urrea KA, Chakrabortty V, Sewera S, Mazur DE, Niman JB, Bartlett RH, Rojas-Peña A, Drake DH. Twenty-four-hour Normothermic Ex Vivo Heart Perfusion With Low Flow Functional Assessment in an Adult Porcine Model. Transplantation 2024; 108:1350-1356. [PMID: 38411562 DOI: 10.1097/tp.0000000000004956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Cold static storage and normothermic ex vivo heart perfusion are routinely limited to 6 h. This report describes intermittent left atrial (LA) perfusion that allows cardiac functional assessment in a working heart mode. METHODS Using our adult porcine model, general anesthesia was induced and a complete cardiectomy was performed following cardioplegic arrest. Back-table instrumentation was completed and normothermic ex vivo heart perfusion (NEHP) was initiated in a nonworking heart mode (Langendorff). After 1 h of resuscitation and recovery, LA perfusion was initiated and the heart was transitioned to a coronary flow-only working heart mode for 30 min. Baseline working heart parameters were documented and the heart was returned to nonworking mode. Working heart assessments were performed for 30 min every 6 h for 24 h. RESULTS Twenty-four-hour NEHP on 9 consecutive hearts (280 ± 42.1 g) was successful and no significant differences were found between working heart parameters at baseline and after 24 h of perfusion. There was no difference between initial and final measurements of LA mean pressures (5.0 ± 3.1 versus 9.0 ± 6.5 mm Hg, P = 0.22), left ventricular systolic pressures (44.3 ± 7.2 versus 39.1 ± 9.0 mm Hg, P = 0.13), mean aortic pressures (30.9 ± 5.8 versus 28.1 ± 8.1 mm Hg, P = 0.37), and coronary resistance (0.174 ± 0.046 versus 0.173 ± 0.066 mL/min/g, P = 0.90). There were also no significant differences between lactate (2.4 ± 0.5 versus 2.6 ± 0.4 mmol/L, P = 0.17) and glucose (173 ± 75 versus 156 ± 70 mg/dL, P = 0.37). CONCLUSIONS A novel model using intermittent LA perfusion to create a coronary flow-only working heart mode for assessment of ex vivo cardiac function has been successfully developed.
Collapse
Affiliation(s)
- Brianna L Spencer
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Spencer K Wilhelm
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Kristopher A Urrea
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Vikramjit Chakrabortty
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Sebastian Sewera
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | | | - Joseph B Niman
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Robert H Bartlett
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Alvaro Rojas-Peña
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
- Department of Surgery, Section of Transplantation, University of Michigan, Ann Arbor, MI
| | - Daniel H Drake
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
2
|
Arnold M, Do P, Davidson SM, Large SR, Helmer A, Beer G, Siepe M, Longnus SL. Metabolic Considerations in Direct Procurement and Perfusion Protocols with DCD Heart Transplantation. Int J Mol Sci 2024; 25:4153. [PMID: 38673737 PMCID: PMC11050041 DOI: 10.3390/ijms25084153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Peter Do
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Stephen R. Large
- Royal Papworth Hospital, Biomedical Campus, Cambridge CB2 0AY, UK
| | - Anja Helmer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Georgia Beer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
3
|
Shao Z, Jiao B, Liu T, Cheng Y, Liu H, Liu Y. TAK-242 treatment ameliorates liver ischemia/reperfusion injury by inhibiting TLR4 signaling pathway in a swine model of Maastricht-category-III cardiac death. Biomed Pharmacother 2016; 84:495-501. [PMID: 27685793 DOI: 10.1016/j.biopha.2016.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/16/2016] [Accepted: 09/11/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES This study aims to test the effects of TAK-242 on liver transplant viability in a model of swine Maastricht-category-III cardiac death. METHODS A swine DCD Maastricht-III model of cardiac death was established, and TAK-242 was administered prior to the induction of cardiac death. The protein and mRNA level of TLR4 signaling pathway molecules and cytokines that are important in mediating immune and inflammatory responses were assessed at different time points following the induction of cardiac death. RESULTS After induction of cardiac death, both the mRNA and protein levels of key molecules (TLR4, TRAF6, NF-ϰB, ICAM-1, MCP-1 and MPO), TNF-α and IL-6 increased significantly. Infusion of TAK-242 1h before induction of cardiac death blocked the increase of immune and inflammatory response molecules. However, the increase of TLR4 level was not affected by infusion of TAK-242. Histology study showed that infusion of TAK-242 protect liver tissue from damage during cardiac death. CONCLUSIONS These results indicates that TLR4 signaling pathway may contribute to ischemia/reperfusion injury in the liver grafts, and blocking TLR4 pathway with TAk-242 may reduce TLR4-mediated tissue damage.
Collapse
Affiliation(s)
- Zigong Shao
- Department of Organ transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Baoping Jiao
- Department of General Surgery, The First Hospital of Liaoning Medical University, Jinzhou 121000, China
| | - Tingting Liu
- Department of Organ transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ying Cheng
- Department of Organ transplantation, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Hao Liu
- Department of Organ transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yongfeng Liu
- Department of Organ transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Successful Porcine Renal Transplantation After 60 Minutes of Donor Warm Ischemia: Extracorporeal Perfusion and Thrombolytics. ASAIO J 2016; 61:474-9. [PMID: 25851315 DOI: 10.1097/mat.0000000000000228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Donation from uncontrolled circulatory determination of death donors (uDCD) is impractical in United States because of the time needed to organize procurement before irreversible organ damage. Salvaging organs after prolonged warm ischemic time (WIT) may address this limitation. We evaluated the combination of extracorporeal support (ECS) and thrombolytics in a porcine uDCD renal transplant model. Nonanticoagulated uDCD sustained 60 min of WIT, and two groups were studied. Rapid recovery (RR)-uDCD renal grafts procured using the standard quick topical cooling and renal flush, and ECS-assisted donation (E-uDCD), 4 hr ECS plus thrombolytics for in situ perfusion before procurement. All kidneys were flushed and cold stored, followed by transplantation into healthy nephrectomized recipients without immunosuppression. Delayed graft function (DGF) was defined as creatinine more than 5.0 mg/dl on any postoperative day. Twelve kidneys in E-uDCD and 6 in RR-uDCD group were transplanted. All 12 E-uDCD recipients had urine production and adequate function in the first 48 hr, but two grafts (16.7%) had DGF at 96 hr. All six recipients from RR-uDCD group had DGF at 48 hr and were killed. Creatinine and blood urea nitrogen (BUN) levels were significantly lower in E-uDCD compared with RR-uDCD group at 24 hr (2.9 ± 0.7 mg/dl vs. 5.2 ± 0.9 mg/dl) and 48 hr (3.2 ± 0.9 mg/dl vs. 7.2 ± 1.0 mg/dl); BUN levels at 24 and 48 hr were 28.3 ± 6.7 mg/dl vs. 39.5 ± 7.5 mg/dl and 23.9 ± 5.0 mg/dl vs. 46 ± 12.9 mg/dl, respectively. Thrombolytics plus ECS precondition organs in situ yielding functional kidneys in a porcine model of uDCD with 60 min of WIT. This procurement method addresses logistical limitations for uDCD use in the United States and could have a major impact on the organ donor pool.
Collapse
|
5
|
White CW, Lillico R, Sandha J, Hasanally D, Wang F, Ambrose E, Müller A, Rachid O, Li Y, Xiang B, Le H, Messer S, Ali A, Large SR, Lee TW, Dixon IMC, Lakowski TM, Simons K, Arora RC, Tian G, Nagendran J, Hryshko LV, Freed DH. Physiologic Changes in the Heart Following Cessation of Mechanical Ventilation in a Porcine Model of Donation After Circulatory Death: Implications for Cardiac Transplantation. Am J Transplant 2016; 16:783-93. [PMID: 26663659 DOI: 10.1111/ajt.13543] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/31/2015] [Accepted: 09/18/2015] [Indexed: 01/25/2023]
Abstract
Hearts donated following circulatory death (DCD) may represent an additional source of organs for transplantation; however, the impact of donor extubation on the DCD heart has not been well characterized. We sought to describe the physiologic changes that occur following withdrawal of life-sustaining therapy (WLST) in a porcine model of DCD. Physiologic changes were monitored continuously for 20 min following WLST. Ventricular pressure, volume, and function were recorded using a conductance catheter placed into the right (N = 8) and left (N = 8) ventricles, and using magnetic resonance imaging (MRI, N = 3). Hypoxic pulmonary vasoconstriction occurred following WLST, and was associated with distension of the right ventricle (RV) and reduced cardiac output. A 120-fold increase in epinephrine was subsequently observed that produced a transient hyperdynamic phase; however, progressive RV distension developed during this time. Circulatory arrest occurred 7.6±0.3 min following WLST, at which time MRI demonstrated an 18±7% increase in RV volume and a 12±9% decrease in left ventricular volume compared to baseline. We conclude that hypoxic pulmonary vasoconstriction and a profound catecholamine surge occur following WLST that result in distension of the RV. These changes have important implications on the resuscitation, preservation, and evaluation of DCD hearts prior to transplantation.
Collapse
Affiliation(s)
- C W White
- Cardiac Surgery, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - R Lillico
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - J Sandha
- Faculty of Medicine, University of Alberta, Edmonton, Canada
| | - D Hasanally
- Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - F Wang
- National Research Council Institute for Biodiagnostics, Winnipeg, Canada
| | - E Ambrose
- Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - A Müller
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - O Rachid
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Y Li
- Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - B Xiang
- National Research Council Institute for Biodiagnostics, Winnipeg, Canada
| | - H Le
- Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - S Messer
- Papworth Hospital, Cambridge, United Kingdom
| | - A Ali
- Papworth Hospital, Cambridge, United Kingdom
| | - S R Large
- Papworth Hospital, Cambridge, United Kingdom
| | - T W Lee
- Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, Canada
| | - I M C Dixon
- Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - T M Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - K Simons
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - R C Arora
- Cardiac Surgery, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - G Tian
- National Research Council Institute for Biodiagnostics, Winnipeg, Canada
| | - J Nagendran
- Cardiac Surgery, University of Alberta, Edmonton, Canada
| | - L V Hryshko
- Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada
| | - D H Freed
- Cardiac Surgery, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St. Boniface Research Center, Winnipeg, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada.,Cardiac Surgery, University of Alberta, Edmonton, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Li P, Liu YF, Yang L. Advantages of dual hypothermic oxygenated machine perfusion over simple cold storage in the preservation of liver from porcine donors after cardiac death. Clin Transplant 2015; 29:820-8. [PMID: 26147375 DOI: 10.1111/ctr.12586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Peng Li
- Department of Organ Transplantation; First Affiliated Hospital; China Medical University; Shenyang China
| | - Yong-Feng Liu
- Department of Organ Transplantation; First Affiliated Hospital; China Medical University; Shenyang China
| | - Lei Yang
- Department of Organ Transplantation; First Affiliated Hospital; China Medical University; Shenyang China
| |
Collapse
|
7
|
Donation after circulatory determination of death: the university of michigan experience with extracorporeal support. Transplantation 2014; 98:328-34. [PMID: 24825520 DOI: 10.1097/tp.0000000000000070] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Extracorporeal support (ECS) during organ procurement from donors after circulatory determination of death (DCDD) could increase the number of donor organs and decrease posttransplant complications. This study reports the experience of a large transplant center with controlled DCDD. METHODS A retrospective review of all potential controlled-DCDD cases between October 1, 2000 and July 31, 2013 was performed. We focused on methods, ethical and practical issues, and recipient outcome data of organs procured and transplanted in our institution using ECS-assisted DCDD (E-DCDD). RESULTS ECS was used for organ procurement in 37 controlled DCDD. The number of organs procured per donor was 2.59, and the number of organs transplanted per donor was 1.68. Delayed graft function occurred in 31% of renal grafts. In three donors (8%), organ donation was not completed because of surgeon judgment. Forty-eight renal grafts (65.8%), thirteen livers (61.9%), and one pancreas (50%) were successfully transplanted. CONCLUSIONS ECS can be routinely implemented in controlled DCDD. In our experience, the organs provided per donor was 2.59. Widely applied, EDCDD could result in more donor organs, especially when applied to DCDD in uncontrolled conditions.
Collapse
|
8
|
Rady MY, Verheijde JL. The science and ethics of withdrawing mechanical positive pressure ventilatory support in the terminally ill. J Palliat Med 2013; 16:828-30. [PMID: 23758501 DOI: 10.1089/jpm.2013.0166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Rady MY, Verheijde JL. No-touch time in donors after cardiac death (nonheart-beating organ donation). Curr Opin Organ Transplant 2013; 18:140-7. [PMID: 23334256 DOI: 10.1097/mot.0b013e32835e29a8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To evaluate arterial pulselessness and the no-touch time of 5 min in defining irreversible cessation of cardiorespiratory functions in nonheart-beating donation (NHBD). RECENT FINDINGS Experimental NHBD studies identified compensatory neurohumoral mechanisms elicited in controlled terminal shock after withdrawal of life support. The neurohumoral mechanisms can preserve the viability of the cardiovascular and central nervous systems by: 1) diverting systemic blood flow from nonvital to vital organs; and 2) maintaining the perfusion pressure (arterial to venous pressure gradient minus interstitial tissue pressure) and microcirculation in vital organs. These compensatory mechanisms cause an early onset of splanchnic hypoperfusion and antemortem ischaemia of transplantable organs and preclude irreversible cessation of cardiorespiratory functions after brief periods of circulatory arrest. Allograft ischaemia is associated with primary nonfunction or delayed function in transplant recipients similar in aetiology to organ dysfunction in the postresuscitation phase of shock. SUMMARY In-situ perfusion can reverse ceased cardiac and neurological functions after arterial pulselessness and a no-touch time of 5 min in experimental models. Perfusion pressures are superior to arterial pulselessness in determining reversibility of ceased cardiac and neurological functions in circulatory arrest. Utilizing physiologically relevant circulatory and neurological parameters in NHBD protocols is essential for ascertaining irreversible cessation of vital functions in donors.
Collapse
Affiliation(s)
- Mohamed Y Rady
- Department of Critical Care Medicine, Mayo Clinic Hospital, Mayo Clinic, Phoenix, Arizona, USA.
| | | |
Collapse
|
10
|
Stiegler P, Sereinigg M, Puntschart A, Seifert-Held T, Zmugg G, Wiederstein-Grasser I, Marte W, Meinitzer A, Stojakovic T, Zink M, Stadlbauer V, Tscheliessnigg K. A 10min "no-touch" time - is it enough in DCD? A DCD animal study. Transpl Int 2012; 25:481-92. [PMID: 22348340 DOI: 10.1111/j.1432-2277.2012.01437.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Donation after cardiac death (DCD) is under investigation because of the lack of human donor organs. Required times of cardiac arrest vary between 75s and 27min until the declaration of the patients' death worldwide. The aim of this study was to investigate brain death in pigs after different times of cardiac arrest with subsequent cardiopulmonary resuscitation (CPR) as a DCD paradigm. DCD was simulated in 20 pigs after direct electrical induction of ventricular fibrillation. The "no-touch" time varied from 2min up to 10min; then 30min of CPR were performed. Brain death was determined by established clinical and electrophysiological criteria. In all animals with cardiac arrest of at least 6min, a persistent loss of brainstem reflexes and no reappearance of bioelectric brain activity occurred. Reappearance of EEG activity was found until 4.5min of cardiac arrest and subsequent CPR. Brainstem reflexes were detectable until 5min of cardiac arrest and subsequent CPR. According to our experiments, the suggestion of 10min of cardiac arrest being equivalent to brain death exceeds the minimum time after which clinical and electrophysiological criteria of brain death are fulfilled. Therefore shorter "no-touch" times might be ethically acceptable to reduce warm ischemia time.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department of Transplantation Surgery, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011; 2011:532127. [PMID: 21403881 PMCID: PMC3051176 DOI: 10.1155/2011/532127] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 01/08/2023] Open
Abstract
Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent and dog kidneys unilobular). The human proximity of porcine physiology and immune systems provides a basic knowledge of graft recovery and inflammatory physiopathology through in vivo studies. In addition, pig large body size allows surgical procedures similar to humans, repeated collections of peripheral blood or renal biopsies making pigs ideal for medical training and for the assessment of preclinical technologies. However, its size is also its main drawback implying expensive housing. Nevertheless, pig models are relevant alternatives to primate models, offering promising perspectives with developments of transgenic modulation and marginal donor models facilitating data extrapolation to human conditions.
Collapse
|