1
|
Korishettar AM, Nishijima Y, Wang Z, Xie Y, Fang J, Wilcox DA, Zhang DX. Endothelin-1 potentiates TRPV1-mediated vasoconstriction of human adipose arterioles in a protein kinase C-dependent manner. Br J Pharmacol 2020; 178:709-725. [PMID: 33184836 DOI: 10.1111/bph.15324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The TRPV cation channels have emerged as important regulators of vascular tone. TRPV1 channels and endothelin-1 are independently associated with the pathophysiology of coronary vasospasm, but the relationship between their vasomotor functions remains unclear. We characterized the vasomotor function of TRPV1 channels in human arterioles and investigated regulation of their vasomotor function by endothelin-1. EXPERIMENTAL APPROACH Human arterioles (mainly from adipose tissue) were threaded on two metal wires, equilibrated in a physiological buffer at 37°C and exposed to increasing concentrations of capsaicin, with or without SB366791 (TRPV1-selective inhibitor) or GF109203X (PKC-selective inhibitor). Some arterioles were pre-constricted with endothelin-1 or phenylephrine or high potassium buffer. TRPV1 mRNA and protein expression in human arteries were also assessed. KEY RESULTS TRPV1 transcripts and proteins were detected in human resistance arteries. Capsaicin (1 μM) induced concentration-dependent constriction of endothelium-intact and endothelium-denuded human adipose arterioles (HAA), which was significantly inhibited by SB366791. Pre-constriction of HAA with endothelin-1, but not high potassium buffer or phenylephrine, significantly potentiated capsaicin (0.1 μM)-induced constriction. GF109203X significantly inhibited potentiation of capsaicin-induced constriction by endothelin-1. CONCLUSION AND IMPLICATIONS TRPV1 channels are expressed in the human vasculature and affect vascular tone of human arterioles on activation. Their vasomotor function is modulated by endothelin-1, mediated in part by PKC. These findings reveal a novel interplay between endothelin-1 signalling and TRPV1 channels in human VSMC, adding to our understanding of the ion channel mechanisms that regulate human arteriolar tone and may also contribute to the pathophysiology of coronary vasospasm.
Collapse
Affiliation(s)
- Ankush M Korishettar
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yoshinori Nishijima
- Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhihao Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Yangjing Xie
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - David A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - David X Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J Clin Med 2020; 9:jcm9030824. [PMID: 32197449 PMCID: PMC7141375 DOI: 10.3390/jcm9030824] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin axis, recognized for its vasoconstrictive action, plays a central role in the pathology of pulmonary arterial hypertension (PAH). Treatment with approved endothelin receptor antagonists (ERAs), such as bosentan, ambrisentan, or macitentan, slow down PAH progression and relieves symptoms. Several findings have indicated that endothelin is further involved in the pathogenesis of certain other diseases, making ERAs potentially beneficial in the treatment of various conditions. In addition to PAH, this review summarizes the use and perspectives of ERAs in cancer, renal disease, fibrotic disorders, systemic scleroderma, vasospasm, and pain management. Bosentan has proven to be effective in systemic sclerosis PAH and in decreasing the development of vasospasm-related digital ulcers. The selective ERA clazosentan has been shown to be effective in preventing cerebral vasospasm and delaying ischemic neurological deficits and new infarcts. Furthermore, in the SONAR (Study Of Diabetic Nephropathy With Atrasentan) trial, the selective ERA atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease. These data suggest atrasentan as a new therapy in the treatment of diabetic nephropathy and possibly other renal diseases. Preclinical studies regarding heart failure, cancer, and fibrotic diseases have demonstrated promising effects, but clinical trials have not yet produced measurable results. Nevertheless, the potential benefits of ERAs may not be fully realized.
Collapse
Affiliation(s)
- Frederik C. Enevoldsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
- Correspondence: ; Tel.: +49-391-6721267
| |
Collapse
|
3
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
4
|
Chen IC, Tan MS, Wu BN, Chai CY, Yeh JL, Chou SH, Chen IJ, Dai ZK. Statins ameliorate pulmonary hypertension secondary to left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. Pediatr Pulmonol 2017; 52:443-457. [PMID: 28029743 DOI: 10.1002/ppul.23610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disorder, for which no therapy is curative. It has been reported that pulmonary vascular remodeling, associated with increasing mean pulmonary arterial pressure and upregulated expression of endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1), RhoA/RhoH-kinase results in the development of PH. Oxidative stress and the RhoA/Rho-kinase pathway are also thought to be involved in the pathophysiology of PH. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HMG-CoA reductase inhibitors) with pleiotropic effects and are potential agents for the treatment of PH. In this study, we investigated the beneficial effects of simvastatin on the development of PH secondary to left ventricular dysfunction. METHODS A PH secondary to left ventricular dysfunction model was established in 6-week-old aortic-banded rats. The pulmonary expression of Rho kinase, ET-1, eNOS, p-eNOS, nitrite/nitrate (NOx), cGMP, p47Phox , and p67Phox were investigated in the early-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 1 to 42 or the late-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 29 to 42. RESULTS Simvastatin attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, plasma brain natriuretic peptide, ET-1, reactive oxygen species, and the NADPH oxidase 2 regulatory subunits, p47Phox and p67Phox , and upregulated pulmonary p-eNOS, NOx, and cGMP in both the early- and late-treated groups. CONCLUSIONS Inhibiting HMG-CoA reductase may have therapeutic potential for preventing and attenuating the development of PH in left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. A translational study in humans is needed to substantiate these findings. Pediatr Pulmonol. 2017;52:443-457. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shah-Hwa Chou
- Department of Thoracic Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Seo JW, Jones SM, Hostetter TA, Iliff JJ, West GA. Methamphetamine induces the release of endothelin. J Neurosci Res 2015; 94:170-8. [PMID: 26568405 DOI: 10.1002/jnr.23697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 11/09/2022]
Abstract
Methamphetamine is a potent psychostimulant drug of abuse that increases release and blocks reuptake of dopamine, producing intense euphoria, factors that may contribute to its widespread abuse. It also produces severe neurotoxicity resulting from oxidative stress, DNA damage, blood-brain barrier disruption, microgliosis, and mitochondrial dysfunction. Intracerebral hemorrhagic and ischemic stroke have been reported after intravenous and oral abuse of methamphetamine. Several studies have shown that methamphetamine causes vasoconstriction of vessels. This study investigates the effect of methamphetamine on endothelin-1 (ET-1) release in mouse brain endothelial cells by ELISA. ET-1 transcription as well as endothelial nitric oxide synthase (eNOS) activation and transcription were measured following methamphetamine treatment. We also examine the effect of methamphetamine on isolated cerebral arteriolar vessels from C57BL/6 mice. Penetrating middle cerebral arterioles were cannulated at both ends with a micropipette system. Methamphetamine was applied extraluminally, and the vascular response was investigated. Methamphetamine treatment of mouse brain endothelial cells resulted in ET-1 release and a transient increase in ET-1 message. The activity and transcription of eNOS were only slightly enhanced after 24 hr of treatment with methamphetamine. In addition, methamphetamine caused significant vasoconstriction of isolated mouse intracerebral arterioles. The vasoconstrictive effect of methamphetamine was attenuated by coapplication of the endothelin receptor antagonist PD145065. These findings suggest that vasoconstriction induced by methamphetamine is mediated through the endothelin receptor and may involve an endothelin-dependent pathway.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | - Susan M Jones
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | | | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
6
|
Saitoh SI, Takeishi Y, Maruyama Y. MECHANISTIC INSIGHTS OF CORONARY VASOSPASM AND NEW THERAPEUTIC APPROACHES. Fukushima J Med Sci 2015; 61:1-12. [PMID: 26063511 DOI: 10.5387/fms.2015-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
7
|
Abstract
Experimental findings in vitro and in vivo illustrate enhanced hypoxia and the formation of reactive oxygen species (ROS) within the kidney following the administration of iodinated contrast media, which may play a role in the development of contrast media-induced nephropathy. Clinical studies indeed support this possibility, suggesting a protective effect of ROS scavenging or reduced ROS formation with the administration of N-acetyl cysteine and bicarbonate infusion, respectively. Furthermore, most risk factors, predisposing to contrast-induced nephropathy are prone to enhanced renal parenchymal hypoxia and ROS formation. In this review, the association of renal hypoxia and ROS-mediated injury is outlined. Generated during contrast-induced renal parenchymal hypoxia, ROS may exert direct tubular and vascular endothelial injury and might further intensify renal parenchymal hypoxia by virtue of endothelial dysfunction and dysregulation of tubular transport. Preventive strategies conceivably should include inhibition of ROS generation or ROS scavenging.
Collapse
|
8
|
Nguyen A, Thorin-Trescases N, Thorin E. Working under pressure: coronary arteries and the endothelin system. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1188-94. [PMID: 20237301 DOI: 10.1152/ajpregu.00653.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endogenous endothelin-1-dependent (ET-1) tone in coronary arteries depends on the balance between ET(A) and ET(B) receptor-mediated effects and on parameters such as receptor distribution and endothelial integrity. Numerous studies highlight the striking functional interactions that exist between nitric oxide (NO) and ET-1 in the regulation of vascular tone. Many of the cardiovascular complications associated with cardiovascular risk factors and aging are initially attributable, at least in part, to endothelial dysfunction characterized by a dysregulation between NO and ET-1. The contribution of the imbalance between smooth muscle ET(A/B) and endothelial ET(B) receptors to this process is poorly understood. An increased contribution of ET-1 that is associated with a proportional decrease in that of NO accompanies the development of coronary endothelial dysfunction, coronary vasospasm, and atherosclerosis. These data form the basis for the rationale of testing therapeutic approaches counteracting ET-1-induced cardiovascular dysfunction. It remains to be determined whether the beneficial role of endothelial ET(B) receptors declines with age and risk factors for cardiovascular diseases, revealing smooth muscle ET(B) receptors with proconstricting and proinflammatory activities.
Collapse
Affiliation(s)
- Albert Nguyen
- Institut de Cardiologie de Montréal, centre de recherche, 5000 rue Bélanger, Montréal, Québec, Canada
| | | | | |
Collapse
|
9
|
Thorin E, Webb DJ. Endothelium-derived endothelin-1. Pflugers Arch 2009; 459:951-8. [PMID: 19967386 DOI: 10.1007/s00424-009-0763-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 12/20/2022]
Abstract
One year after the revelation by Dr. Furchgott in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr. Yanagisawa's group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21-amino acid) peptide were quickly determined in humans, and it was reported that, in most cardiovascular diseases, circulating levels of ET-1 were increased, and ET-1 was then tagged as "a bad guy." The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of the first dual ET-1 receptor antagonist in 1993 by Dr. Clozel's team, who entered clinical development with bosentan, which was offered to patients with pulmonary arterial hypertension in 2001. The revelation of Dr. Furchgott opened a Pandora's box with ET-1 as one of the actors. In this brief review, we will discuss the physiological and pathophysiological role of endothelium-derived ET-1 focusing on the regulation of the vascular tone, and as much as possible in humans. The coronary bed will be used as a running example in this review because it is the most susceptible to endothelial dysfunction, but references to the cerebral and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of nitric oxide and ET-1.
Collapse
Affiliation(s)
- Eric Thorin
- Department of Surgery and Research Center, Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC, Canada.
| | | |
Collapse
|