1
|
Wang P, Huang Q, Liu B, Xu Q, Li X, Feng G, Liu Y. Oxygen therapy in the intensive care unit. Med Gas Res 2025; 15:478-487. [PMID: 40300883 DOI: 10.4103/mgr.medgasres-d-24-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/18/2025] [Indexed: 05/01/2025] Open
Abstract
Oxygen therapy is a crucial treatment method for maintaining vital signs in patients in the intensive care unit. However, several controversial issues have emerged regarding its clinical application. This article analyzes current research trends in oxygen therapy in the intensive care unit and provides guidance and recommendations. Relevant literature was retrieved from the Web of Science Core Collection, and keyword co-occurrence and highly cited literature hotspot analyses were conducted using VOSviewer 1.6.19 software. The key topics related to oxygen therapy in the intensive care unit primarily focus on four areas: oxygen therapy and mechanical ventilation in the intensive care unit, extracorporeal membrane oxygenation therapy for coronavirus disease 2019 and its role in reducing mortality, research on hypoxia and oxygen saturation monitoring, and oxygen inhalation therapy in the intensive care unit. The analysis of highly cited literature indicates that the main research hotspots regarding oxygen therapy used in the intensive care unit focus primarily on conservative oxygen therapy, high-flow nasal oxygen therapy, comparisons of high- and low-oxygenation strategies, and research on hyperbaric oxygen therapy. First, the potential of conservative oxygen therapy to reduce mortality rates in the intensive care unit has attracted considerable attention; however, further clinical studies are needed to validate its optimal parameters and suitable patient populations. Second, high-flow nasal oxygen therapy has been shown to be effective in alleviating respiratory distress and reducing the need for intubation. This therapy can deliver oxygen flows of up to 60 L/min, effectively improving respiratory distress and decreasing intubation demands. In patients subjected to high-risk extubation, the combination of high-flow nasal oxygen therapy and noninvasive ventilation significantly lowers the rate of reintubation, making the combined approach one of the best strategies to prevent respiratory failure after extubation in the intensive care unit. Third, there are differences between lower and higher oxygenation strategies regarding their effects on patient mortality, long-term outcomes, and clinician preferences; however, there is currently no clear evidence indicating which strategy is superior. Clinicians' preferences regarding various oxygenation targets may impact the design of future studies. Finally, hyperbaric oxygen therapy is recognized as an effective supportive treatment for various critical conditions and has significant application value in acute severe traumatic brain injury, cerebral resuscitation, and cardiopulmonary resuscitation. Currently, researchers are continually exploring the latest oxygen therapies in the intensive care unit. Several randomized controlled clinical trials investigating automated oxygen control, novel high-flow nasal oxygen therapy, and combined oxygen therapy are underway. The results of these trials should be closely observed. Overall, this article provides a systematic review and valuable reference for the scientific and rational application of oxygen therapy in the intensive care unit. Future research should focus on verifying the optimal parameters of conservative oxygen therapy, assessing oxygen needs in different patient populations, evaluating the long-term effects of oxygen treatment, and developing novel oxygen therapy technologies and devices.
Collapse
Affiliation(s)
- Ping Wang
- Department of Emergency, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qixin Huang
- Department of Emergency, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bin Liu
- Department of Emergency, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qiangjun Xu
- Department of Emergency, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xingsong Li
- Department of Emergency, The Second People's Hospital of Qingyuan City, Qingyuan, Guangdong Province, China
| | - Guidong Feng
- Department of Emergency, The Second People's Hospital of Qingyuan City, Qingyuan, Guangdong Province, China
| | - Yiming Liu
- Department of Emergency and Disaster Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Viarasilpa T. Managing Intracranial Pressure Crisis. Curr Neurol Neurosci Rep 2024; 25:12. [PMID: 39699775 DOI: 10.1007/s11910-024-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide a comprehensive management protocol for the treatment of intracranial pressure (ICP) crises based on the latest evidence. RECENT FINDINGS The review discusses updated information on various aspects of critical care management in patients experiencing ICP crises, including mechanical ventilation, fluid therapy, hemoglobin targets, and hypertonic saline infusion, the advantages of ICP monitoring, the critical ICP threshold, and bedside neuromonitoring. All aspects of critical care treatment, including hemodynamic and respiratory support and adjustment of ICP reduction therapy, may impact patient outcomes. ICP monitoring allows ICP values, trends, waveforms, and CPP calculation, which are helpful to guide patient care. Advanced neuromonitoring devices are available at the bedside to diagnose impaired intracranial compliance and intracranial hypertension, assess brain function, and optimize cerebral perfusion. Future research should focus on developing appropriate intervention protocols for both invasive and noninvasive neuromonitoring in managing ICP crisis patients.
Collapse
Affiliation(s)
- Tanuwong Viarasilpa
- Division of Critical Care, Department of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Iavarone IG, Donadello K, Cammarota G, D’Agostino F, Pellis T, Roman-Pognuz E, Sandroni C, Semeraro F, Sekhon M, Rocco PRM, Robba C. Optimizing brain protection after cardiac arrest: advanced strategies and best practices. Interface Focus 2024; 14:20240025. [PMID: 39649449 PMCID: PMC11620827 DOI: 10.1098/rsfs.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024] Open
Abstract
Cardiac arrest (CA) is associated with high incidence and mortality rates. Among patients who survive the acute phase, brain injury stands out as a primary cause of death or disability. Effective intensive care management, including targeted temperature management, seizure treatment and maintenance of normal physiological parameters, plays a crucial role in improving survival and neurological outcomes. Current guidelines advocate for neuroprotective strategies to mitigate secondary brain injury following CA, although certain treatments remain subjects of debate. Clinical examination and neuroimaging studies, both invasive and non-invasive neuromonitoring methods and serum biomarkers are valuable tools for predicting outcomes in comatose resuscitated patients. Neuromonitoring, in particular, provides vital insights for identifying complications, personalizing treatment approaches and forecasting prognosis in patients with brain injury post-CA. In this review, we offer an overview of advanced strategies and best practices aimed at optimizing brain protection after CA.
Collapse
Affiliation(s)
- Ida Giorgia Iavarone
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genova, Italy
| | - Katia Donadello
- Department of Surgery, Anaesthesia and Intensive Care Unit B, Dentistry, Paediatrics and Gynaecology, University of Verona, University Hospital Integrated Trust of Verona, Verona, Italy
| | - Giammaria Cammarota
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero, Universitaria SS Antonio E Biagio E Cesare Arrigo Di Alessandria, Alessandria, Italy
- Translational Medicine Department, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | - Fausto D’Agostino
- Department of Anaesthesia, Intensive Care and Pain Management, Campus Bio MedicoUniversity and Teaching Hospital, Rome, Italy
| | - Tommaso Pellis
- Department of Anaesthesia, Intensive Care and Pain Management, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Erik Roman-Pognuz
- Department of Medical Science, Intensive Care Unit, University Hospital of Cattinara - ASUGI, Trieste Department of Anesthesia, University of Trieste, Trieste, Italy
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology - Fondazione Policlinico Universitario A. Gemelli, IRCCS, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Federico Semeraro
- Department of Anesthesia, Intensive Care and Prehospital Emergency, Maggiore Hospital Carlo Alberto Pizzardi, Bologna, Italy
| | - Mypinder Sekhon
- Department of Medicine, Division of Critical Care Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
4
|
Sarmiento-Calderón J, Borré-Naranjo D, Dueñas-Castell C. Monitoreo neurológico multimodal en cuidado intensivo. ACTA COLOMBIANA DE CUIDADO INTENSIVO 2024. [DOI: 10.1016/j.acci.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Kartal A, Robba C, Helmy A, Wolf S, Aries MJH. How to Define and Meet Blood Pressure Targets After Traumatic Brain Injury: A Narrative Review. Neurocrit Care 2024; 41:369-385. [PMID: 38982005 PMCID: PMC11377672 DOI: 10.1007/s12028-024-02048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) poses a significant challenge to healthcare providers, necessitating meticulous management of hemodynamic parameters to optimize patient outcomes. This article delves into the critical task of defining and meeting continuous arterial blood pressure (ABP) and cerebral perfusion pressure (CPP) targets in the context of severe TBI in neurocritical care settings. METHODS We narratively reviewed existing literature, clinical guidelines, and emerging technologies to propose a comprehensive approach that integrates real-time monitoring, individualized cerebral perfusion target setting, and dynamic interventions. RESULTS Our findings emphasize the need for personalized hemodynamic management, considering the heterogeneity of patients with TBI and the evolving nature of their condition. We describe the latest advancements in monitoring technologies, such as autoregulation-guided ABP/CPP treatment, which enable a more nuanced understanding of cerebral perfusion dynamics. By incorporating these tools into a proactive monitoring strategy, clinicians can tailor interventions to optimize ABP/CPP and mitigate secondary brain injury. DISCUSSION Challenges in this field include the lack of standardized protocols for interpreting multimodal neuromonitoring data, potential variability in clinical decision-making, understanding the role of cardiac output, and the need for specialized expertise and customized software to have individualized ABP/CPP targets regularly available. The patient outcome benefit of monitoring-guided ABP/CPP target definitions still needs to be proven in patients with TBI. CONCLUSIONS We recommend that the TBI community take proactive steps to translate the potential benefits of personalized ABP/CPP targets, which have been implemented in certain centers, into a standardized and clinically validated reality through randomized controlled trials.
Collapse
Affiliation(s)
- Ahmet Kartal
- University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel J H Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
- Institute of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| |
Collapse
|
6
|
Taran S, Stevens RD, Perrot B, McCredie VA, Cinotti R, Asehnoune K, Pelosi P, Robba C. Incidence and Outcomes of Acute Respiratory Distress Syndrome in Brain-Injured Patients Receiving Invasive Ventilation: A Secondary Analysis of the ENIO Study. J Intensive Care Med 2024; 39:136-145. [PMID: 37563968 PMCID: PMC10771027 DOI: 10.1177/08850666231194532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Background: Acute respiratory distress syndrome (ARDS) is an important pulmonary complication in brain-injured patients receiving invasive mechanical ventilation (IMV). We aimed to evaluate the incidence and association between ARDS and clinical outcomes in patients with different forms of acute brain injury requiring IMV in the intensive care unit (ICU). Methods: This was a preplanned secondary analysis of a prospective, multicenter, international cohort study (NCT03400904). We included brain-injured patients receiving IMV for ≥ 24 h. ARDS was the main exposure of interest and was identified during index ICU admission using the Berlin definition. We examined the incidence and adjusted association of ARDS with ICU mortality, ICU length of stay, duration of IMV, and extubation failure. Outcomes were evaluated using mixed-effect logistic regression and cause-specific Cox proportional hazards models. Results: 1492 patients from 67 hospitals and 16 countries were included in the analysis, of whom 137 individuals developed ARDS (9.2% of overall cohort). Across countries, the median ARDS incidence was 5.1% (interquartile range [IQR] 0-10; range 0-27.3). ARDS was associated with increased ICU mortality (adjusted odds ratio (OR) 2.66; 95% confidence interval [CI], 1.29-5.48), longer ICU length of stay (adjusted hazard ratio [HR] 0.59; 95% CI, 0.48-0.73), and longer duration of IMV (adjusted HR 0.54; 95% CI, 0.44-0.67). The association between ARDS and extubation failure approached statistical significance (adjusted HR 1.48; 95% CI 0.99-2.21). Higher ARDS severity was associated with incrementally longer ICU length of stay and longer cumulative duration of IMV. Findings remained robust in a sensitivity analysis evaluating the magnitude of unmeasured confounding. Conclusions: In this cohort of acutely brain-injured patients, the incidence of ARDS was similar to that reported in other mixed cohorts of critically ill patients. Development of ARDS was associated with worse outcomes.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert D. Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bastien Perrot
- UMR 1246 MethodS in Patient-centered outcomes and HEalth REsearch, SPHERE, Nantes Université, Tours Université, Nantes, France
| | - Victoria A. McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Raphael Cinotti
- UMR 1246 MethodS in Patient-centered outcomes and HEalth REsearch, SPHERE, Nantes Université, Tours Université, Nantes, France
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel-Dieu, Nantes, France
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel-Dieu, Nantes, France
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | |
Collapse
|
7
|
Battaglini D, Delpiano L, Masuello D, Leme Silva P, Rocco PRM, Matta B, Pelosi P, Robba C. Effects of positive end-expiratory pressure on brain oxygenation, systemic oxygen cascade and metabolism in acute brain injured patients: a pilot physiological cross-sectional study. J Clin Monit Comput 2024; 38:165-175. [PMID: 37453007 DOI: 10.1007/s10877-023-01042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
Patients with acute brain injury (ABI) often require the application of positive end-expiratory pressure (PEEP) to optimize mechanical ventilation and systemic oxygenation. However, the effect of PEEP on cerebral function and metabolism is unclear. The primary aim of this study was to evaluate the effects of PEEP augmentation test (from 5 to 15 cmH2O) on brain oxygenation, systemic oxygen cascade and metabolism in ABI patients. Secondary aims include to determine whether changes in regional cerebral oxygenation are reflected by changes in oxygenation cascade and metabolism, and to assess the correlation between brain oxygenation and mechanical ventilation settings. Single center, pilot cross-sectional observational study in an Academic Hospital. Inclusion criteria were: adult (> 18 y/o) patients with ABI and stable intracranial pressure, available gas exchange and indirect calorimetry (IC) monitoring. Cerebral oxygenation was monitored with near-infrared spectroscopy (NIRS) and different derived parameters were collected: variation (Δ) in oxy (O2)-hemoglobin (Hb) (ΔO2Hbi), deoxy-Hb(ΔHHbi), total-Hb(ΔcHbi), and total regional oxygenation (ΔrSO2). Oxygen cascade and metabolism were monitored with arterial/venous blood gas analysis [arterial partial pressure of oxygen (PaO2), arterial saturation of oxygen (SaO2), oxygen delivery (DO2), and lactate], and IC [energy expenditure (REE), respiratory quotient (RQ), oxygen consumption (VO2), and carbon dioxide production (VCO2)]. Data were measured at PEEP 5 cmH2O and 15 cmH2O and expressed as delta (Δ) values. Ten patients with ABI [median age 70 (IQR 62-75) years, 6 (60%) were male, median Glasgow Coma Scale at ICU admission 5.5 (IQR 3-8)] were included. PEEP augmentation from 5 to 15 cmH2O did not affect cerebral oxygenation, systemic oxygen cascade parameters, and metabolism. The arterial component of cerebral oxygenation was significantly correlated with DO2 (ΔO2HBi, rho = 0.717, p = 0.037). ΔrSO2 (rho = 0.727, p = 0.032), ΔcHbi (rho = 0.797, p = 0.013), and ΔHHBi (rho = 0.816, p = 0.009) were significantly correlated with SaO2, but not ΔO2Hbi. ΔrSO2 was significantly correlated with VCO2 (rho = 0.681, p = 0.049). No correlation between brain oxygenation and ventilatory parameters was found. PEEP augmentation test did not affect cerebral and systemic oxygenation or metabolism. Changes in cerebral oxygenation significantly correlated with DO2, SaO2, and VCO2. Cerebral oxygen monitoring could be considered for individualization of mechanical ventilation setting in ABI patients without high or instable intracranial pressure.
Collapse
Affiliation(s)
| | - Lara Delpiano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Denise Masuello
- Hospital Donaciòn Francisco Santojanni, Buenos Aires, Argentina
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| |
Collapse
|
8
|
Zhong X, Liang Y, Wang X, Lan H, Bai X, Jin L, Guan BO. Free-moving-state microscopic imaging of cerebral oxygenation and hemodynamics with a photoacoustic fiberscope. LIGHT, SCIENCE & APPLICATIONS 2024; 13:5. [PMID: 38163847 PMCID: PMC10758391 DOI: 10.1038/s41377-023-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
We report the development of a head-mounted photoacoustic fiberscope for cerebral imaging in a freely behaving mouse. The 4.5-gram imaging probe has a 9-µm lateral resolution and 0.2-Hz frame rate over a 1.2-mm wide area. The probe can continuously monitor cerebral oxygenation and hemodynamic responses at single-vessel resolution, showing significantly different cerebrovascular responses to external stimuli under anesthesia and in the freely moving state. For example, when subjected to high-concentration CO2 respiration, enhanced oxygenation to compensate for hypercapnia can be visualized due to cerebral regulation in the freely moving state. Comparative studies exhibit significantly weakened compensation capabilities in obese rodents. This new imaging modality can be used for investigating both normal and pathological cerebrovascular functions and shows great promise for studying cerebral activity, disorders and their treatments.
Collapse
Affiliation(s)
- Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyu Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Haoying Lan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Thiara S, Sekhon MS. Blood pressure augmentation after cardiac arrest: Time to move beyond manipulating vital signs. Resuscitation 2023; 190:109913. [PMID: 37516157 DOI: 10.1016/j.resuscitation.2023.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Affiliation(s)
- Sharanjit Thiara
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. RECENT FINDINGS Physiologic studies have elucidated the impact of low tidal volume ventilation and varying levels of positive end expiratory pressure on intracranial pressure and cerebral perfusion. Epidemiologic studies have reported the association of different thresholds of tidal volume, plateau pressure, driving pressure, mechanical power, and arterial oxygen and carbon dioxide concentrations with mortality and neurologic outcomes in patients with ABI. The data collectively make clear that injurious ventilation in this population is associated with worse outcomes; however, optimal ventilatory targets remain poorly defined. SUMMARY Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.
Collapse
Affiliation(s)
- Shaurya Taran
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Wahlster
- Department of Neurology
- Department of Neurological Surgery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Chiara Robba
- IRCCS, Policlinico San Martino
- Department of Surgical Sciences and Diagnostic Integrated, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
12
|
Avoiding brain hypoxia in severe traumatic brain injury in settings with limited resources - A pathophysiological guide. J Crit Care 2023; 75:154260. [PMID: 36773368 DOI: 10.1016/j.jcrc.2023.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 02/11/2023]
Abstract
Cerebral oxygenation represents the balance between oxygen delivery, consumption and utilization by the brain, and therefore reflects the adequacy of cerebral perfusion. Different factors can influence the amount of oxygen to the brain including arterial blood pressure, hemoglobin levels, systemic oxygenation, and transfer of oxygen from blood to the cerebral microcirculation. A mismatch between cerebral oxygen supply and demand results in cerebral hypoxia/ischemia, and is associated with secondary brain damage and worsened outcome after acute brain injury. Therefore, monitoring and prompt treatment of cerebral oxygenation compromise is warranted in both neuro and general intensive care unit populations. Several tools have been proposed for the assessment of cerebral oxygenation, including non-invasive/invasive or indirect/direct methods, including Jugular Venous Oxygen Saturation (SjO2), Partial Brain Tissue Oxygen Tension (PtiO2), Near infrared spectroscopy (NIRS), Transcranial Doppler, electroencephalography and Computed Tomography. In this manuscript, we aim to review the pathophysiology of cerebral oxygenation, describe monitoring technics, and generate recommendations for avoiding brain hypoxia in settings with low availability of resources for direct brain oxygen monitoring.
Collapse
|
13
|
Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different? Neurocrit Care 2023; 38:178-191. [PMID: 36071333 DOI: 10.1007/s12028-022-01593-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. In patients with TBI and concomitant acute respiratory distress syndrome (ARDS), adjunctive strategies include sedation optimization, neuromuscular blockade, recruitment maneuvers, prone positioning, and extracorporeal life support. However, these approaches have been largely extrapolated from studies in patients with ARDS and without brain injury, with limited data in patients with TBI. This narrative review will summarize the existing evidence for mechanical ventilation in patients with TBI. Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.
Collapse
|
14
|
Godoy DA, Murillo-Cabezas F, Suarez JI, Badenes R, Pelosi P, Robba C. "THE MANTLE" bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit Care 2023; 27:13. [PMID: 36635711 PMCID: PMC9835224 DOI: 10.1186/s13054-022-04242-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/12/2022] [Indexed: 01/13/2023] Open
Abstract
To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Departamento Medicina Critica. Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, Catamarca, Argentina
| | | | - Jose Ignacio Suarez
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
- INCLIVA Research Medical Institute, Valencia, Spain
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Battaglini D, Pelosi P, Robba C. Ten rules for optimizing ventilatory settings and targets in post-cardiac arrest patients. Crit Care 2022; 26:390. [PMID: 36527126 PMCID: PMC9758928 DOI: 10.1186/s13054-022-04268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiac arrest (CA) is a major cause of morbidity and mortality frequently associated with neurological and systemic involvement. Supportive therapeutic strategies such as mechanical ventilation, hemodynamic settings, and temperature management have been implemented in the last decade in post-CA patients, aiming at protecting both the brain and the lungs and preventing systemic complications. A lung-protective ventilator strategy is currently the standard of care among critically ill patients since it demonstrated beneficial effects on mortality, ventilator-free days, and other clinical outcomes. The role of protective and personalized mechanical ventilation setting in patients without acute respiratory distress syndrome and after CA is becoming more evident. The individual effect of different parameters of lung-protective ventilation, including mechanical power as well as the optimal oxygen and carbon dioxide targets, on clinical outcomes is a matter of debate in post-CA patients. The management of hemodynamics and temperature in post-CA patients represents critical steps for obtaining clinical improvement. The aim of this review is to summarize and discuss current evidence on how to optimize mechanical ventilation in post-CA patients. We will provide ten tips and key insights to apply a lung-protective ventilator strategy in post-CA patients, considering the interplay between the lungs and other systems and organs, including the brain.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| |
Collapse
|
16
|
Robba C, Badenes R, Battaglini D, Ball L, Sanfilippo F, Brunetti I, Jakobsen JC, Lilja G, Friberg H, Wendel-Garcia PD, Young PJ, Eastwood G, Chew MS, Unden J, Thomas M, Joannidis M, Nichol A, Lundin A, Hollenberg J, Hammond N, Saxena M, Martin A, Solar M, Taccone FS, Dankiewicz J, Nielsen N, Grejs AM, Ebner F, Pelosi P. Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial. Crit Care 2022; 26:323. [PMID: 36271410 PMCID: PMC9585831 DOI: 10.1186/s13054-022-04186-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of this study was to describe the values of partial pressure of oxygen values (PaO2) and the episodes of hypoxemia and hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. The secondary aim was to evaluate the association of PaO2 with patients' outcome. METHODS Preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after OHCA (TTM2) trial. Arterial blood gases values were collected from randomization every 4 h for the first 32 h, and then, every 8 h until day 3. Hypoxemia was defined as PaO2 < 60 mmHg and severe hyperoxemia as PaO2 > 300 mmHg. Mortality and poor neurological outcome (defined according to modified Rankin scale) were collected at 6 months. RESULTS 1418 patients were included in the analysis. The mean age was 64 ± 14 years, and 292 patients (20.6%) were female. 24.9% of patients had at least one episode of hypoxemia, and 7.6% of patients had at least one episode of severe hyperoxemia. Both hypoxemia and hyperoxemia were independently associated with 6-month mortality, but not with poor neurological outcome. The best cutoff point associated with 6-month mortality for hypoxemia was 69 mmHg (Risk Ratio, RR = 1.009, 95% CI 0.93-1.09), and for hyperoxemia was 195 mmHg (RR = 1.006, 95% CI 0.95-1.06). The time exposure, i.e., the area under the curve (PaO2-AUC), for hyperoxemia was significantly associated with mortality (p = 0.003). CONCLUSIONS In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be considered in this group of patients. TRIAL REGISTRATION clinicaltrials.gov NCT02908308 , Registered September 20, 2016.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clínic Universitari de Valencia, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| | - Denise Battaglini
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lorenzo Ball
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Filippo Sanfilippo
- Department of Anaesthesia and Intensive Care, A.O.U. "Policlinico-San Marco", Catania, Italy
| | - Iole Brunetti
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Janus Christian Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Malmö, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Anesthesia and Intensive Care, Lund University, Lund, Sweden
| | - Pedro David Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Paul J Young
- Medical Research Institute of New Zealand, Private Bag 7902, Wellington, 6242, New Zealand
- Intensive Care Unit, Wellington Regional Hospital, Wellington, New Zealand
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC, Australia
| | - Glenn Eastwood
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
| | - Michelle S Chew
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Unden
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Lund University, Halland, Sweden
| | - Matthew Thomas
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Andreas Lundin
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 423 45, Gothenburg, Sweden
| | - Jacob Hollenberg
- Department of Clinical Science and Education, Södersjukhuset, Centre for Resuscitation Science, Karolinska Institutet, Solna, Sweden
| | - Naomi Hammond
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Critical Care Division, The George Institute for Global Health, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Manoj Saxena
- Intensive Care Unit, St George Hospital, Sydney, Australia
| | - Annborn Martin
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, Sweden
| | - Miroslav Solar
- Department of Internal Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Internal Medicine - Cardioangiology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Fabio Silvio Taccone
- Department of Intensive Care Medicine, Université Libre de Bruxelles, Hopital Erasme, Brussels, Belgium
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care and Clinical Sciences Helsingborg, Helsingborg Hospital, Lund University, Lund, Sweden
| | - Anders Morten Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Florian Ebner
- Department of Clinical Sciences Lund, Anesthesia and Intensive Care, Helsingborg Hospital, Lund University, 251 87, Helsingborg, Sweden
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| |
Collapse
|
17
|
Robba C, Taccone FS, Citerio G. Monitoring cerebral oxygenation in acute brain-injured patients. Intensive Care Med 2022; 48:1463-1466. [PMID: 35798853 DOI: 10.1007/s00134-022-06788-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy. .,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurointensive Care Unit, Department of Neurosciences, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
18
|
Plotnikow GA, Del Bono MR. Acute brain injury and hypoxemia: Personalized ventilatory support. Med Intensiva 2022; 46:521-523. [PMID: 35810130 DOI: 10.1016/j.medine.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Affiliation(s)
- G A Plotnikow
- Hospital Británico de Buenos Aires, Buenos Aires, Argentina; Facultad de Medicina y Ciencias de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina.
| | - M R Del Bono
- Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Rauchman SH, Albert J, Pinkhasov A, Reiss AB. Mild-to-Moderate Traumatic Brain Injury: A Review with Focus on the Visual System. Neurol Int 2022; 14:453-470. [PMID: 35736619 PMCID: PMC9227114 DOI: 10.3390/neurolint14020038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major global public health problem. Neurological damage from TBI may be mild, moderate, or severe and occurs both immediately at the time of impact (primary injury) and continues to evolve afterwards (secondary injury). In mild (m)TBI, common symptoms are headaches, dizziness and fatigue. Visual impairment is especially prevalent. Insomnia, attentional deficits and memory problems often occur. Neuroimaging methods for the management of TBI include computed tomography and magnetic resonance imaging. The location and the extent of injuries determine the motor and/or sensory deficits that result. Parietal lobe damage can lead to deficits in sensorimotor function, memory, and attention span. The processing of visual information may be disrupted, with consequences such as poor hand-eye coordination and balance. TBI may cause lesions in the occipital or parietal lobe that leave the TBI patient with incomplete homonymous hemianopia. Overall, TBI can interfere with everyday life by compromising the ability to work, sleep, drive, read, communicate and perform numerous activities previously taken for granted. Treatment and rehabilitation options available to TBI sufferers are inadequate and there is a pressing need for new ways to help these patients to optimize their functioning and maintain productivity and participation in life activities, family and community.
Collapse
Affiliation(s)
- Steven H. Rauchman
- The Fresno Institute of Neuroscience, Fresno, CA 93730, USA
- Correspondence:
| | - Jacqueline Albert
- Department of Medicine, Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (J.A.); (A.B.R.)
| | - Aaron Pinkhasov
- Department of Psychiatry, NYU Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Allison B. Reiss
- Department of Medicine, Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (J.A.); (A.B.R.)
| |
Collapse
|
20
|
Lesión cerebral aguda e hipoxemia: individualización del soporte ventilatorio. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|