1
|
Fumagalli B, Giani M, Bombino M, Fumagalli D, Merelli M, Chiesa G, Rona R, Bellani G, Rezoagli E, Foti G. Pressure Support Ventilation During Extracorporeal Membrane Oxygenation Support in Patients With Acute Respiratory Distress Syndrome. ASAIO J 2025; 71:171-176. [PMID: 39116298 PMCID: PMC11761049 DOI: 10.1097/mat.0000000000002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
In the initial phases of veno-venous extracorporeal membrane oxygenation (VV ECMO) support for severe acute respiratory distress syndrome (ARDS), ultraprotective controlled mechanical ventilation (CMV) is typically employed to limit the progression of lung injury. As patients recover, transitioning to assisted mechanical ventilation can be considered to reduce the need for prolonged sedation and paralysis. This study aimed to evaluate the feasibility of transitioning to pressure support ventilation (PSV) during VV ECMO and to explore variations in respiratory mechanics and oxygenation parameters following the transition to PSV. This retrospective monocentric study included 191 adult ARDS patients treated with VV ECMO between 2009 and 2022. Within this population, 131 (69%) patients were successfully switched to PSV during ECMO. Pressure support ventilation was associated with an increase in respiratory system compliance ( p = 0.02) and a reduction in pulmonary shunt fraction ( p < 0.001). Additionally, improvements in the cardiovascular Sequential Organ Failure Assessment score and a reduction in pulmonary arterial pressures ( p < 0.05) were recorded. Ninety-four percent of patients who successfully transitioned to PSV were weaned from ECMO, and 118 (90%) were discharged alive from the intensive care unit (ICU). Of those who did not reach PSV, 74% died on ECMO, whereas the remaining patients were successfully weaned from extracorporeal support. In conclusion, PSV is feasible during VV ECMO and potentially correlates with improvements in respiratory function and hemodynamics.
Collapse
Affiliation(s)
- Benedetta Fumagalli
- From Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Giani
- From Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Michela Bombino
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Denise Fumagalli
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Milena Merelli
- From Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gaia Chiesa
- From Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Rona
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giacomo Bellani
- Department of Medical Sciences, University of Trento, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | - Emanuele Rezoagli
- From Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giuseppe Foti
- From Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
2
|
Rocha NN, Silva PL, Battaglini D, Rocco PRM. Heart-lung crosstalk in acute respiratory distress syndrome. Front Physiol 2024; 15:1478514. [PMID: 39493867 PMCID: PMC11527665 DOI: 10.3389/fphys.2024.1478514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is initiated by a primary insult that triggers a cascade of pathological events, including damage to lung epithelial and endothelial cells, extracellular matrix disruption, activation of immune cells, and the release of pro-inflammatory mediators. These events lead to increased alveolar-capillary barrier permeability, resulting in interstitial/alveolar edema, collapse, and subsequent hypoxia and hypercapnia. ARDS not only affects the lungs but also significantly impacts the cardiovascular system. We conducted a comprehensive literature review on heart-lung crosstalk in ARDS, focusing on the pathophysiology, effects of mechanical ventilation, hypoxemia, and hypercapnia on cardiac function, as well as ARDS secondary to cardiac arrest and cardiac surgery. Mechanical ventilation, essential for ARDS management, can increase intrathoracic pressure, decrease venous return and right ventricle preload. Moreover, acidemia and elevations in transpulmonary pressures with mechanical ventilation both increase pulmonary vascular resistance and right ventricle afterload. Cardiac dysfunction can exacerbate pulmonary edema and impair gas exchange, creating a vicious cycle, which hinders both heart and lung therapy. In conclusion, understanding the heart-lung crosstalk in ARDS is important to optimize therapeutic strategies. Future research should focus on elucidating the precise mechanisms underlying this interplay and developing targeted interventions that address both organs simultaneously.
Collapse
Affiliation(s)
- Nazareth N. Rocha
- Biomedical Institute, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Bello G, Giammatteo V, Bisanti A, Delle Cese L, Rosà T, Menga LS, Montini L, Michi T, Spinazzola G, De Pascale G, Pennisi MA, Ribeiro De Santis Santiago R, Berra L, Antonelli M, Grieco DL. High vs Low PEEP in Patients With ARDS Exhibiting Intense Inspiratory Effort During Assisted Ventilation: A Randomized Crossover Trial. Chest 2024; 165:1392-1405. [PMID: 38295949 DOI: 10.1016/j.chest.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Alessandra Bisanti
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Montini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Giorgia Spinazzola
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Mariano Alberto Pennisi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Roberta Ribeiro De Santis Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy.
| |
Collapse
|
4
|
Cesarano M, Grieco DL, Michi T, Munshi L, Menga LS, Delle Cese L, Ruggiero E, Rosà T, Natalini D, Sklar MC, Cutuli SL, Bongiovanni F, De Pascale G, Ferreyro BL, Goligher EC, Antonelli M. Helmet noninvasive support for acute hypoxemic respiratory failure: rationale, mechanism of action and bedside application. Ann Intensive Care 2022; 12:94. [PMID: 36241926 PMCID: PMC9568634 DOI: 10.1186/s13613-022-01069-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. Main results In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet; alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10–15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. Conclusions Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.
Collapse
Affiliation(s)
- Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Daniele Natalini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Michael C Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Salvatore L Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Gennaro De Pascale
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
5
|
Grieco DL, Maggiore SM, Roca O, Spinelli E, Patel BK, Thille AW, Barbas CSV, de Acilu MG, Cutuli SL, Bongiovanni F, Amato M, Frat JP, Mauri T, Kress JP, Mancebo J, Antonelli M. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med 2021; 47:851-866. [PMID: 34232336 PMCID: PMC8261815 DOI: 10.1007/s00134-021-06459-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The role of non-invasive respiratory support (high-flow nasal oxygen and noninvasive ventilation) in the management of acute hypoxemic respiratory failure and acute respiratory distress syndrome is debated. The oxygenation improvement coupled with lung and diaphragm protection produced by non-invasive support may help to avoid endotracheal intubation, which prevents the complications of sedation and invasive mechanical ventilation. However, spontaneous breathing in patients with lung injury carries the risk that vigorous inspiratory effort, combined or not with mechanical increases in inspiratory airway pressure, produces high transpulmonary pressure swings and local lung overstretch. This ultimately results in additional lung damage (patient self-inflicted lung injury), so that patients intubated after a trial of noninvasive support are burdened by increased mortality. Reducing inspiratory effort by high-flow nasal oxygen or delivery of sustained positive end-expiratory pressure through the helmet interface may reduce these risks. In this physiology-to-bedside review, we provide an updated overview about the role of noninvasive respiratory support strategies as early treatment of hypoxemic respiratory failure in the intensive care unit. Noninvasive strategies appear safe and effective in mild-to-moderate hypoxemia (PaO2/FiO2 > 150 mmHg), while they can yield delayed intubation with increased mortality in a significant proportion of moderate-to-severe (PaO2/FiO2 ≤ 150 mmHg) cases. High-flow nasal oxygen and helmet noninvasive ventilation represent the most promising techniques for first-line treatment of severe patients. However, no conclusive evidence allows to recommend a single approach over the others in case of moderate-to-severe hypoxemia. During any treatment, strict physiological monitoring remains of paramount importance to promptly detect the need for endotracheal intubation and not delay protective ventilation.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Salvatore Maurizio Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy.,University Department of Innovative Technologies in Medicine and Dentistry, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Oriol Roca
- Servei de Medicina Intensiva, Hospital Universitari Vall D'Hebron, Institut de Recerca Vall D'Hebron, Barcelona, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| | - Bhakti K Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Arnaud W Thille
- Centre Hospitalier Universitaire (CHU) de Poitiers, Médecine Intensive Réanimation, Poitiers, France.,Centre D'Investigation Clinique 1402, ALIVE, INSERM, Université de Poitiers, Poitiers, France
| | - Carmen Sílvia V Barbas
- Division of Pulmonary and Critical Care, University of São Paulo, São Paulo, Brazil.,Intensive Care Unit, Albert Einstein Hospital, São Paulo, Brazil
| | - Marina Garcia de Acilu
- Servei de Medicina Intensiva, Hospital Universitari Vall D'Hebron, Institut de Recerca Vall D'Hebron, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvatore Lucio Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Marcelo Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jean-Pierre Frat
- Centre Hospitalier Universitaire (CHU) de Poitiers, Médecine Intensive Réanimation, Poitiers, France.,Centre D'Investigation Clinique 1402, ALIVE, INSERM, Université de Poitiers, Poitiers, France
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - John P Kress
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
6
|
Low Spontaneous Breathing Effort during Extracorporeal Membrane Oxygenation in a Porcine Model of Severe Acute Respiratory Distress Syndrome. Anesthesiology 2020; 133:1106-1117. [PMID: 32898217 DOI: 10.1097/aln.0000000000003538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A lung rest strategy is recommended during extracorporeal membrane oxygenation in severe acute respiratory distress syndrome (ARDS). However, spontaneous breathing modes are frequently used in this context. The impact of this approach may depend on the intensity of breathing efforts. The authors aimed to determine whether a low spontaneous breathing effort strategy increases lung injury, compared to a controlled near-apneic ventilation, in a porcine severe ARDS model assisted by extracorporeal membrane oxygenation. METHODS Twelve female pigs were subjected to lung injury by repeated lavages, followed by 2-h injurious ventilation. Thereafter, animals were connected to venovenous extracorporeal membrane oxygenation and during the first 3 h, ventilated with near-apneic ventilation (positive end-expiratory pressure, 10 cm H2O; driving pressure, 10 cm H2O; respiratory rate, 5/min). Then, animals were allocated into (1) near-apneic ventilation, which continued with the previous ventilatory settings; and (2) spontaneous breathing: neuromuscular blockers were stopped, sweep gas flow was decreased until regaining spontaneous efforts, and ventilation was switched to pressure support mode (pressure support, 10 cm H2O; positive end-expiratory pressure, 10 cm H2O). In both groups, sweep gas flow was adjusted to keep Paco2 between 30 and 50 mmHg. Respiratory and hemodynamic as well as electric impedance tomography data were collected. After 24 h, animals were euthanized and lungs extracted for histologic tissue analysis. RESULTS Compared to near-apneic group, the spontaneous breathing group exhibited a higher respiratory rate (52 ± 17 vs. 5 ± 0 breaths/min; mean difference, 47; 95% CI, 34 to 59; P < 0.001), but similar tidal volume (2.3 ± 0.8 vs. 2.8 ± 0.4 ml/kg; mean difference, 0.6; 95% CI, -0.4 to 1.4; P = 0.983). Extracorporeal membrane oxygenation settings and gas exchange were similar between groups. Dorsal ventilation was higher in the spontaneous breathing group. No differences were observed regarding histologic lung injury. CONCLUSIONS In an animal model of severe ARDS supported with extracorporeal membrane oxygenation, spontaneous breathing characterized by low-intensity efforts, high respiratory rates, and very low tidal volumes did not result in increased lung injury compared to controlled near-apneic ventilation. EDITOR’S PERSPECTIVE
Collapse
|
7
|
Tobe M, Saito S. Analogy between classical Yoga/Zen breathing and modern clinical respiratory therapy. J Anesth 2020; 34:944-949. [PMID: 32803435 PMCID: PMC7429199 DOI: 10.1007/s00540-020-02840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/09/2020] [Indexed: 11/25/2022]
Abstract
Anesthesiologists and intensivists are modern-day professionals who provide appropriate respiratory care, vital for patient survival. Recently, anesthesiologists have increasingly focused their attention on the type of spontaneous breathing made by non-intubated patients with pulmonary disease cared for in an intensive care unit, and also patients with chronic pain receiving cognitive behavioral therapy. Prior to our modern understanding of respiratory physiology, Zen meditators recognized that breathing has a significant impact on a person’s mental state and general physical well-being. Examples of this knowledge regarding respiration include the beneficial effects of deep inhalation and slow exhalation on anxiety and general wellness. The classical literature has noted many suggestions for breathing and its psycho-physical effects. In the present review, we examine the effect of classical breathing methods and find an analogy between typical Yoga/Zen breathing and modern clinical respiratory therapy. Evidence is increasing about historical breathing and related meditation techniques that may be effective in modern clinical practice, especially in the field of anesthesiology, such as in improving respiratory function and reducing chronic pain. Clarification of the detailed mechanisms involved is anticipated.
Collapse
Affiliation(s)
- Masaru Tobe
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan.
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
8
|
Kreyer S, Baker WL, Scaravilli V, Linden K, Belenkiy SM, Necsoiu C, Muders T, Putensen C, Chung KK, Cancio LC, Batchinsky AI. Assessment of spontaneous breathing during pressure controlled ventilation with superimposed spontaneous breathing using respiratory flow signal analysis. J Clin Monit Comput 2020; 35:859-868. [PMID: 32535849 PMCID: PMC7293172 DOI: 10.1007/s10877-020-00545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/06/2020] [Indexed: 11/25/2022]
Abstract
Integrating spontaneous breathing into mechanical ventilation (MV) can speed up liberation from it and reduce its invasiveness. On the other hand, inadequate and asynchronous spontaneous breathing has the potential to aggravate lung injury. During use of airway-pressure-release-ventilation (APRV), the assisted breaths are difficult to measure. We developed an algorithm to differentiate the breaths in a setting of lung injury in spontaneously breathing ewes. We hypothesized that differentiation of breaths into spontaneous, mechanical and assisted is feasible using a specially developed for this purpose algorithm. Ventilation parameters were recorded by software that integrated ventilator output variables. The flow signal, measured by the EVITA® XL (Lübeck, Germany), was measured every 2 ms by a custom Java-based computerized algorithm (Breath-Sep). By integrating the flow signal, tidal volume (VT) of each breath was calculated. By using the flow curve the algorithm separated the different breaths and numbered them for each time point. Breaths were separated into mechanical, assisted and spontaneous. Bland Altman analysis was used to compare parameters. Comparing the values calculated by Breath-Sep with the data from the EVITA® using Bland-Altman analyses showed a mean bias of - 2.85% and 95% limits of agreement from - 25.76 to 20.06% for MVtotal. For respiratory rate (RR) RRset a bias of 0.84% with a SD of 1.21% and 95% limits of agreement from - 1.53 to 3.21% were found. In the cluster analysis of the 25th highest breaths of each group RRtotal was higher using the EVITA®. In the mechanical subgroup the values for RRspont and MVspont the EVITA® showed higher values compared to Breath-Sep. We developed a computerized method for respiratory flow-curve based differentiation of breathing cycle components during mechanical ventilation with superimposed spontaneous breathing. Further studies in humans and optimizing of this technique is necessary to allow for real-time use at the bedside.
Collapse
Affiliation(s)
- Stefan Kreyer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA.
| | - William L Baker
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Vittorio Scaravilli
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milano, MI, Italy
| | - Katharina Linden
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
- Pediatric Department, University Hospital Bonn, Bonn, Germany
| | - Slava M Belenkiy
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
- Department of Anesthesiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Corina Necsoiu
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Thomas Muders
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Leopoldo C Cancio
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Andriy I Batchinsky
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
- The Geneva Foundation, Tacoma, WA, USA
| |
Collapse
|
9
|
Lung- and Diaphragm-protective Ventilation in Acute Respiratory Distress Syndrome: Rationale and Challenges. Anesthesiology 2020; 130:620-633. [PMID: 30844950 DOI: 10.1097/aln.0000000000002605] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel approach to ventilation aims to be both lung- and diaphragm-protective. This strategy integrates concerns over excessive lung stress during spontaneous breathing while avoiding both insufficient and excessive inspiratory effort.
Collapse
|
10
|
Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 2020; 25:192-198. [PMID: 30720482 DOI: 10.1097/mcc.0000000000000597] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Facilitating spontaneous breathing has been traditionally recommended during mechanical ventilation in acute respiratory distress syndrome (ARDS). However, early, short-term use of neuromuscular blockade appears to improve survival, and spontaneous effort has been shown to potentiate lung injury in animal and clinical studies. The purpose of this review is to describe the beneficial and deleterious effects of spontaneous breathing in ARDS, explain potential mechanisms for harm, and provide contemporary suggestions for clinical management. RECENT FINDINGS Gentle spontaneous effort can improve lung function and prevent diaphragm atrophy. However, accumulating evidence indicates that spontaneous effort may cause or worsen lung and diaphragm injury, especially if the ARDS is severe or spontaneous effort is vigorous. Recently, such effort-dependent lung injury has been termed patient self-inflicted lung injury (P-SILI). Finally, several approaches to minimize P-SILI while maintaining some diaphragm activity (e.g. partial neuromuscular blockade, high PEEP) appear promising. SUMMARY We update and summarize the role of spontaneous breathing during mechanical ventilation in ARDS, which can be beneficial or deleterious, depending on the strength of spontaneous activity and severity of lung injury. Future studies are needed to determine ventilator strategies that minimize injury but maintaining some diaphragm activity.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Diaphragm dysfunction is common in mechanically ventilated patients and predisposes them to prolonged ventilator dependence and poor clinical outcomes. Mechanical ventilation is a major cause of diaphragm dysfunction in these patients, raising the possibility that diaphragm dysfunction might be prevented if mechanical ventilation can be optimized to avoid diaphragm injury - a concept referred to as diaphragm-protective ventilation. This review surveys the evidence supporting the concept of diaphragm-protective ventilation and introduces potential routes and challenges to pursuing this strategy. RECENT FINDINGS Mechanical ventilation can cause diaphragm injury (myotrauma) by a variety of mechanisms. An understanding of these various mechanisms raises the possibility of a new approach to ventilatory management, a diaphragm-protective ventilation strategy. Deranged inspiratory effort is the main mediator of diaphragmatic myotrauma; titrating ventilation to maintain an optimal level of inspiratory effort may help to limit diaphragm dysfunction and accelerate liberation of mechanical ventilation. SUMMARY Mechanical ventilation can cause diaphragm injury and weakness. A novel diaphragm-protective ventilation strategy, avoiding the harmful effects of both excessive and insufficient inspiratory effort, has the potential to substantially improve outcomes for patients.
Collapse
|
12
|
Schaefer MS, Serpa Neto A, Pelosi P, Gama de Abreu M, Kienbaum P, Schultz MJ, Meyer-Treschan TA. Temporal Changes in Ventilator Settings in Patients With Uninjured Lungs: A Systematic Review. Anesth Analg 2020; 129:129-140. [PMID: 30222649 DOI: 10.1213/ane.0000000000003758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients with uninjured lungs, increasing evidence indicates that tidal volume (VT) reduction improves outcomes in the intensive care unit (ICU) and in the operating room (OR). However, the degree to which this evidence has translated to clinical changes in ventilator settings for patients with uninjured lungs is unknown. To clarify whether ventilator settings have changed, we searched MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science for publications on invasive ventilation in ICUs or ORs, excluding those on patients <18 years of age or those with >25% of patients with acute respiratory distress syndrome (ARDS). Our primary end point was temporal change in VT over time. Secondary end points were changes in maximum airway pressure, mean airway pressure, positive end-expiratory pressure, inspiratory oxygen fraction, development of ARDS (ICU studies only), and postoperative pulmonary complications (OR studies only) determined using correlation analysis and linear regression. We identified 96 ICU and 96 OR studies comprising 130,316 patients from 1975 to 2014 and observed that in the ICU, VT size decreased annually by 0.16 mL/kg (-0.19 to -0.12 mL/kg) (P < .001), while positive end-expiratory pressure increased by an average of 0.1 mbar/y (0.02-0.17 mbar/y) (P = .017). In the OR, VT size decreased by 0.09 mL/kg per year (-0.14 to -0.04 mL/kg per year) (P < .001). The change in VTs leveled off in 1995. Other intraoperative ventilator settings did not change in the study period. Incidences of ARDS (ICU studies) and postoperative pulmonary complications (OR studies) also did not change over time. We found that, during a 39-year period, from 1975 to 2014, VTs in clinical studies on mechanical ventilation have decreased significantly in the ICU and in the OR.
Collapse
Affiliation(s)
- Maximilian S Schaefer
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Program of Post-Graduation, Innovation and Research, Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Peter Kienbaum
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, the Netherlands
| | | |
Collapse
|
13
|
Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study. Crit Care Med 2019; 47:229-238. [PMID: 30379668 PMCID: PMC6336491 DOI: 10.1097/ccm.0000000000003519] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. Design: Planned secondary analysis of a prospective, observational, multicentre cohort study. Setting: International sample of 459 ICUs from 50 countries. Patients: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. Interventions: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. Measurements and Main Results: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92–1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93–1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0–22] vs 8 [0–20]; p = 0.014) and shorter duration of ICU stay (11 [6–20] vs 12 [7–22]; p = 0.04). Conclusions: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required.
Collapse
|
14
|
Antonelli M. NIV through the helmet can be used as first-line intervention for early mild and moderate ARDS: an unproven idea thinking out of the box. Crit Care 2019; 23:146. [PMID: 31200762 PMCID: PMC6570624 DOI: 10.1186/s13054-019-2429-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/10/2022] Open
|
15
|
Gallagher JJ. Alternative Modes of Mechanical Ventilation. AACN Adv Crit Care 2019; 29:396-404. [PMID: 30523010 DOI: 10.4037/aacnacc2018372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Modern mechanical ventilators are more complex than those first developed in the 1950s. Newer ventilation modes can be difficult to understand and implement clinically, although they provide more treatment options than traditional modes. These newer modes, which can be considered alternative or nontraditional, generally are classified as either volume controlled or pressure controlled. Dual-control modes incorporate qualities of pressure-controlled and volume-controlled modes. Some ventilation modes provide variable ventilatory support depending on patient effort and may be classified as closed-loop ventilation modes. Alternative modes of ventilation are tools for lung protection, alveolar recruitment, and ventilator liberation. Understanding the function and application of these alternative modes prior to implementation is essential and is most beneficial for the patient.
Collapse
Affiliation(s)
- John J Gallagher
- John J. Gallagher is Trauma Program Manager/Clinical Nurse Specialist at Penn Presbyterian Medical Center, 51 N 39th Street, Medical Office Building, Suite 120, Philadelphia, PA 19104
| |
Collapse
|
16
|
Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:292. [PMID: 28828367 DOI: 10.21037/atm.2017.06.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) patients, spontaneous breathing is associated with multiple physiologic benefits: it prevents muscles atrophy, avoids paralysis, decreases sedation needs and is associated with improved hemodynamics. On the other hand, in the presence of uncontrolled inspiratory effort, severe lung injury and asynchronies, spontaneous ventilation might also worsen lung edema, induce diaphragm dysfunction and lead to muscles exhaustion and prolonged weaning. In the present review article, we present physiologic mechanisms driving spontaneous breathing, with emphasis on how to implement basic and advanced respiratory monitoring to assess lung protection during spontaneous assisted ventilation. Then, key benefits and risks associated with spontaneous ventilation are described. Finally, we propose some clinical means to promote protective spontaneous breathing at the bedside. In summary, early switch to spontaneous assisted breathing of acutely hypoxemic patients is more respectful of physiology and might yield several advantages. Nonetheless, risk of additional lung injury is not completely avoided during spontaneous breathing and careful monitoring of target physiologic variables such as tidal volume (Vt) and driving transpulmonary pressure should be applied routinely. In clinical practice, multiple interventions such as extracorporeal CO2 removal exist to maintain inspiratory effort, Vt and driving transpulmonary pressure within safe limits but more studies are needed to assess their long-term efficacy.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Cambiaghi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Langer
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure. Crit Care Med 2017; 44:e678-88. [PMID: 27002273 DOI: 10.1097/ccm.0000000000001649] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. DESIGN Crossover design. SETTING University animal research laboratory. SUBJECTS Anesthetized landrace pigs. INTERVENTIONS Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. MEASUREMENTS AND RESULTS Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2O, while concomitantly reducing pendelluft and tidal recruitment. No pendelluft was observed in the absence of spontaneous effort. CONCLUSIONS Spontaneous effort at low positive end-expiratory pressure improved oxygenation but promoted tidal recruitment associated with pendelluft. Optimized positive end-expiratory pressure (set after lung recruitment) may reverse the harmful effects of spontaneous breathing by reducing inspiratory effort, pendelluft, and tidal recruitment.
Collapse
|
18
|
Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. FiftyYears ofResearch inARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med 2017; 195:985-992. [DOI: 10.1164/rccm.201604-0748cp] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Takeshi Yoshida
- Translational Medicine
- Department of Critical Care Medicine, and
- Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Intensive Care Unit, Osaka University Hospital, Suita, Japan; and
| | - Yuji Fujino
- Intensive Care Unit, Osaka University Hospital, Suita, Japan; and
| | - Marcelo B. P. Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (InCor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Brian P. Kavanagh
- Translational Medicine
- Department of Critical Care Medicine, and
- Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Antonelli M. Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: No. Intensive Care Med 2017; 43:253-255. [PMID: 28074230 DOI: 10.1007/s00134-016-4488-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Massimo Antonelli
- Agostino Gemelli University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
20
|
Messai E, Bouguerra A, Guarracino F, Bonacchi M. Low Blood Arterial Oxygenation During Venovenous Extracorporeal Membrane Oxygenation: Proposal for a Rational Algorithm-Based Management. J Intensive Care Med 2016; 31:553-560. [PMID: 27271548 DOI: 10.1177/0885066616649134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Venovenous extracorporeal membrane oxygenation (VV-ECMO) is a therapeutic option in the management of the most severe forms of acute respiratory distress syndrome. Oxygenation during VV-ECMO depends on many parameters, and its management is complex. The management of ECMO is still not completely codified. The aim of this study was to rationalize the management of hypoxemia during VV-ECMO. METHODS To build a comprehensive flow diagram for management of hypoxemia during VV-ECMO, we considered (1) relationship between O2 arterial saturation and its determinants; (2) analysis of physiopathology of oxygenation under VV-ECMO; and (3) main guidelines and recommendations recapitulated in troubleshooting charts. RESULTS We propose a stepwise approach that could guide specific intervention to improve oxygenation during VV-ECMO. The first step is to obtain adequate pump flow, the main determinant of oxygenation, by eliminating a mechanical problem or inadequate venous drainage. Second, if hypoxemia persists, algorithm considers multiple reasons for inadequate oxygenation, namely: (1) excessive recirculation, (2) excessive cardiac output (decrease of ratio pump flow/cardiac output), (3) decrease in SvO2 (oxygen saturation in mixed venous blood), (4) malfunction of oxygenator, and (5) deterioration of residual lung function. Finally, for each modification of oxygenation parameters, specific measures are proposed to restore an adequate oxygenation by extracorporeal membrane oxygenation. CONCLUSION If hypoxemia occurs during VV-ECMO, collecting oxygenation parameters and a clear step-by-step algorithm could guide specific intervention to improve oxygenation. This flow diagram is in accordance with current recommendations recapitulated in guidelines or troubleshooting chart but more accurate and complete. Although rational and appealing, it remains to be tested together with a number of still unsolved issues.
Collapse
Affiliation(s)
- Elmi Messai
- Service de réanimation, Centre Hospitalier de Cholet, Cholet, France
| | | | - Fabio Guarracino
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Massimo Bonacchi
- Cardiac Surgery, Experimental and Clinical Medicine Department, University of Florence, Firenze, Italy
| |
Collapse
|
21
|
Damanhuri NS, Chiew YS, Othman NA, Docherty PD, Pretty CG, Shaw GM, Desaive T, Chase JG. Assessing respiratory mechanics using pressure reconstruction method in mechanically ventilated spontaneous breathing patient. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:175-185. [PMID: 27208532 DOI: 10.1016/j.cmpb.2016.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Respiratory system modelling can aid clinical decision making during mechanical ventilation (MV) in intensive care. However, spontaneous breathing (SB) efforts can produce entrained "M-wave" airway pressure waveforms that inhibit identification of accurate values for respiratory system elastance and airway resistance. A pressure wave reconstruction method is proposed to accurately identify respiratory mechanics, assess the level of SB effort, and quantify the incidence of SB effort without uncommon measuring devices or interruption to care. METHODS Data from 275 breaths aggregated from all mechanically ventilated patients at Christchurch Hospital were used in this study. The breath specific respiratory elastance is calculated using a time-varying elastance model. A pressure reconstruction method is proposed to reconstruct pressure waves identified as being affected by SB effort. The area under the curve of the time-varying respiratory elastance (AUC Edrs) are calculated and compared, where unreconstructed waves yield lower AUC Edrs. The difference between the reconstructed and unreconstructed pressure is denoted as a surrogate measure of SB effort. RESULTS The pressure reconstruction method yielded a median AUC Edrs of 19.21 [IQR: 16.30-22.47]cmH2Os/l. In contrast, the median AUC Edrs for unreconstructed M-wave data was 20.41 [IQR: 16.68-22.81]cmH2Os/l. The pressure reconstruction method had the least variability in AUC Edrs assessed by the robust coefficient of variation (RCV)=0.04 versus 0.05 for unreconstructed data. Each patient exhibited different levels of SB effort, independent from MV setting, indicating the need for non-invasive, real time assessment of SB effort. CONCLUSION A simple reconstruction method enables more consistent real-time estimation of the true, underlying respiratory system mechanics of a SB patient and provides the surrogate of SB effort, which may be clinically useful for clinicians in determining optimal ventilator settings to improve patient care.
Collapse
Affiliation(s)
- Nor Salwa Damanhuri
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand; Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), Malaysia.
| | - Yeong Shiong Chiew
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand; Monash University, Malaysia.
| | - Nor Azlan Othman
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand; Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), Malaysia.
| | - Paul D Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand.
| | - Christopher G Pretty
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand.
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand.
| | | | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand.
| |
Collapse
|
22
|
Bellani G, Grasselli G, Teggia-Droghi M, Mauri T, Coppadoro A, Brochard L, Pesenti A. Do spontaneous and mechanical breathing have similar effects on average transpulmonary and alveolar pressure? A clinical crossover study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:142. [PMID: 27160458 PMCID: PMC4862136 DOI: 10.1186/s13054-016-1290-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/08/2016] [Indexed: 01/27/2023]
Abstract
Background Preservation of spontaneous breathing (SB) is sometimes debated because it has potentially both negative and positive effects on lung injury in comparison with fully controlled mechanical ventilation (CMV). We wanted (1) to verify in mechanically ventilated patients if the change in transpulmonary pressure was similar between pressure support ventilation (PSV) and CMV for a similar tidal volume, (2) to estimate the influence of SB on alveolar pressure (Palv), and (3) to determine whether a reliable plateau pressure could be measured during pressure support ventilation (PSV). Methods We studied ten patients equipped with esophageal catheters undergoing three levels of PSV followed by a phase of CMV. For each condition, we calculated the maximal and mean transpulmonary (ΔPL) swings and Palv. Results Overall, ΔPL was similar between CMV and PSV, but only loosely correlated. The differences in ΔPL between CMV and PSV were explained largely by different inspiratory flows, indicating that the resistive pressure drop caused this difference. By contrast, the Palv profile was very different between CMV and SB; SB led to progressively more negative Palv during inspiration, and Palv became lower than the set positive end-expiratory pressure in nine of ten patients at low PSV. Finally, inspiratory occlusion holds performed during PSV led to plateau and Δ PL pressures comparable with those measured during CMV. Conclusions Under similar conditions of flow and volume, transpulmonary pressure change is similar between CMV and PSV. SB during mechanical ventilation can cause remarkably negative swings in Palv, a mechanism by which SB might potentially induce lung injury. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1290-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giacomo Bellani
- Department of Health Science, University of Milan-Bicocca, Via Cadore, 48 20900, Monza, Italy. .,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| | - Giacomo Grasselli
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Maddalena Teggia-Droghi
- Department of Health Science, University of Milan-Bicocca, Via Cadore, 48 20900, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Coppadoro
- Department of Emergency and Intensive Care, A. Manzoni Hospital, Lecco, Italy
| | - Laurent Brochard
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Antonio Pesenti
- Department of Health Science, University of Milan-Bicocca, Via Cadore, 48 20900, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Abstract
Abstract
Background:
In patients with acute respiratory distress syndrome (ARDS), the use of assisted mechanical ventilation is a subject of debate. Assisted ventilation has benefits over controlled ventilation, such as preserved diaphragm function and improved oxygenation. Therefore, higher level of “patient control” of ventilator assist may be preferable in ARDS. However, assisted modes may also increase the risk of high tidal volumes and lung-distending pressures. The current study aims to quantify how differences in freedom to control the ventilator affect lung-protective ventilation, breathing pattern variability, and patient–ventilator interaction.
Methods:
Twelve patients with ARDS were ventilated in a randomized order with assist pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA). Transpulmonary pressure, tidal volume, diaphragm electrical activity, and patient–ventilator interaction were measured. Respiratory variability was assessed using the coefficient of variation of tidal volume.
Results:
During inspiration, transpulmonary pressure was slightly lower with NAVA (10.3 ± 0.7, 11.2 ± 0.7, and 9.4 ± 0.7 cm H2O for PCV, PSV, and NAVA, respectively; P < 0.01). Tidal volume was similar between modes (6.6 [5.7 to 7.0], 6.4 [5.8 to 7.0], and 6.0 [5.6 to 7.3] ml/kg for PCV, PSV, and NAVA, respectively), but respiratory variability was higher with NAVA (8.0 [6.4 to 10.0], 7.1 [5.9 to 9.0], and 17.0 [12.0 to 36.1] % for PCV, PSV, and NAVA, respectively; P < 0.001). Patient–ventilator interaction improved with NAVA (6 [5 to 8] % error) compared with PCV (29 [14 to 52] % error) and PSV (12 [9 to 27] % error); P < 0.0001.
Conclusion:
In patients with mild-to-moderate ARDS, increasing freedom to control the ventilator maintains lung-protective ventilation in terms of tidal volume and lung-distending pressure, but it improves patient–ventilator interaction and preserves respiratory variability.
Collapse
|
24
|
Huh JW. Update on the Extracorporeal Life Support. Tuberc Respir Dis (Seoul) 2015; 78:149-55. [PMID: 26175765 PMCID: PMC4499579 DOI: 10.4046/trd.2015.78.3.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 01/19/2023] Open
Abstract
Extracorporeal life support (ECLS) is a type of cardiopulmonary bypass. It is an artificial means of supplying oxygen and removing CO2 on behalf of damaged lungs while patients are recovering from underlying diseases. Recently, the use of ECLS is rapidly increasing as this machine becomes smaller, less invasive and easier to use. In addition, the improvement of clinicians' technique and outcome is increasing their application to patients with acute respiratory distress. In this regard, the purpose of this review is to introduce the physiological principles, risk factors, and advantages of ECLS, clinical rationale for using ECLS, ventilatory strategy during ECLS, which are still causing different opinions, the weaning from ECLS, and the use of anticoagulant.
Collapse
Affiliation(s)
- Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care 2015; 3:18. [PMID: 27408729 PMCID: PMC4940771 DOI: 10.1186/s40560-015-0083-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
The role of preserving spontaneous effort during mechanical ventilation and its interaction with mechanical ventilation have been actively investigated for several decades. Inspiratory muscle activities can lower the pleural components surrounding the lung, leading to an increase in transpulmonary pressure when spontaneous breathing effort is preserved during mechanical ventilation. Thus, increased transpulmonary pressure provides various benefits for gas exchange, ventilation pattern, and lung aeration. However, it is important to note that these beneficial effects of preserved spontaneous effort have been demonstrated only when spontaneous effort is modest and lung injury is less severe. Recent studies have revealed the ‘dark side’ of spontaneous effort during mechanical ventilation, especially in severe lung injury. The ‘dark side’ refers to uncontrollable transpulmonary pressure due to combined high inspiratory pressure with excessive spontaneous effort and the injurious lung inflation pattern of Pendelluft (i.e., the translocation of air from nondependent lung regions to dependent lung regions). Thus, during the early stages of severe ARDS, the strict control of transpulmonary pressure and prevention of Pendelluft should be achieved with the short-term use of muscle paralysis. When there is preserved spontaneous effort in ARDS, spontaneous effort should be maintained at a modest level, as the transpulmonary pressure and the effect size of Pendelluft depend on the intensity of the spontaneous effort.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Intensive Care Unit, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Akinori Uchiyama
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Fujino
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
26
|
Ntoumenopoulos G. Rehabilitation during mechanical ventilation: Review of the recent literature. Intensive Crit Care Nurs 2015; 31:125-32. [PMID: 26026495 DOI: 10.1016/j.iccn.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 01/27/2023]
Abstract
Mechanically ventilated patients are at increased risk of developing physical and psychological complications that are associated with prolonged weaning from mechanical ventilation, increased morbidity and mortality. These complications include intensive care unit acquired weakness, delirium and a loss of physical function that may persist well beyond ICU and hospital discharge. Factors such as the requirement for intubation and mechanical ventilation, sedation, systemic inflammation and immobility are associated with the development of these physical and psychological complications. Implementation of rehabilitation in mechanically ventilated patients has been demonstrated to be both safe and feasible and provide benefits in terms of physical and psychological function and assist with weaning from mechanical ventilation. The recent relevant literature on the role of rehabilitation interventions in the mechanically ventilated patient will be discussed.
Collapse
Affiliation(s)
- George Ntoumenopoulos
- School of Physiotherapy, Australian Catholic University, Sydney, Australia; Physiotherapy Department, St. Vincents Hospital, Sydney, Australia; Physiotherapy Department, Guy's and St. Thomas' NHS Foundation Trust, Kings Health Partners, London, United Kingdom.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Spontaneous breathing has been shown to induce both positive and negative effects on the function and on injury of lungs and diaphragm during critical illness; thus, monitoring of the breathing effort generated by the patient might be valuable for a better understanding of the mechanisms of disease and to set properly ventilation. The purpose of this review is to summarize the recent findings on the different techniques available to measure the patient's breathing effort, mainly during spontaneous assisted ventilation. RECENT FINDINGS Although esophageal pressure measurement remains the solid reference technique to quantitate the breathing effort, other tools have been developed and tested. These include the diaphragmatic electromyogram, whose voltage is linearly related to the pressure generated by the diaphragm, ultrasound, which relies on the measurement of diaphragmatic displacement or thickening, and other approaches, which derive breathing effort solely from the airway flow and pressure tracings. SUMMARY The development of measurement techniques and their introduction in clinical practice will allow us to understand the role of spontaneous breathing effort in the pathophysiology of lung injury and weaning failure, and how to adjust the breathing workload in an individual patient.
Collapse
|
28
|
Muttini S, Villani PG, Trimarco R, Bellani G, Grasselli G, Patroniti N. Relation between peak and integral of the diaphragm electromyographic activity at different levels of support during weaning from mechanical ventilation: A physiologic study. J Crit Care 2015; 30:7-12. [DOI: 10.1016/j.jcrc.2014.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/06/2014] [Accepted: 08/23/2014] [Indexed: 11/16/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Esophageal pressure measurement well estimates pleural pressure. The interpretation of absolute values is often debated for various reasons, but the changes in pressure measured are considered very accurate provided that a number of precautions are taken. The information provided by these measurements is unique in nature and has an enormous potential to influence management. It allows to study the exact influence of the chest wall and to determine the real lung distending pressure. It is also the only way to quantify respiratory muscle activity and the work of breathing. RECENT FINDINGS The application of esophageal pressure monitoring potentially covers a large field, especially for what concerns mechanical ventilation. This goes from the acute phase of the acute respiratory distress syndrome (ARDS) to weaning and patient-ventilator interactions. During ARDS, recent findings indicate that this measurement may help titrating the level of positive end-expiratory pressure or to determine the well tolerated upper limit of airway pressure. SUMMARY Application of esophageal pressure monitoring is limited by technical issues, the need for background physiological knowledge and the fact that very few studies have assessed a direct influence of this measurement on patients' outcome. The technique is underused in everyday practice.
Collapse
|
30
|
Daily sedative interruption versus intermittent sedation in mechanically ventilated critically ill patients: a randomized trial. Ann Intensive Care 2014; 4:14. [PMID: 24900938 PMCID: PMC4026117 DOI: 10.1186/2110-5820-4-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daily sedative interruption and intermittent sedation are effective in abbreviating the time on mechanical ventilation. Whether one is superior to the other has not yet been determined. Our aim was to compare daily interruption and intermittent sedation during the mechanical ventilation period in a low nurse staffing ICU. METHODS Adult patients expected to need mechanical ventilation for more than 24 hours were randomly assigned, in a single center, either to daily interruption of continuous sedative and opioid infusion or to intermittent sedation. In both cases, our goal was to maintain a Sedation Agitation Scale (SAS) level of 3 or 4; that is patients should be calm, easily arousable or awakened with verbal stimuli or gentle shaking. Primary outcome was ventilator-free days in 28 days. Secondary outcomes were ICU and hospital mortality, incidence of delirium, nurse workload, self-extubation and psychological distress six months after ICU discharge. RESULTS A total of 60 patients were included. There were no differences in the ventilator-free days in 28 days between daily interruption and intermittent sedation (median: 24 versus 25 days, P = 0.160). There were also no differences in ICU mortality (40 versus 23.3%, P = 0.165), hospital mortality (43.3 versus 30%, P = 0.284), incidence of delirium (30 versus 40%, P = 0.472), self-extubation (3.3 versus 6.7%, P = 0.514), and psychological stress six months after ICU discharge. Also, the nurse workload was not different between groups, but it was reduced on day 5 compared to day 1 in both groups (Nurse Activity Score (NAS) in the intermittent sedation group was 54 on day 1 versus 39 on day 5, P < 0.001; NAS in daily interruption group was 53 on day 1 versus 38 on day 5, P < 0.001). Fentanyl and midazolam total dosages per patient were higher in the daily interruption group. The tidal volume was higher in the intermittent sedation group during the first five days of ICU stay. CONCLUSIONS There was no difference in the number of ventilator-free days in 28 days between both groups. Intermittent sedation was associated with lower sedative and opioid doses. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00824239.
Collapse
|
31
|
Richard JCM, Lyazidi A, Akoumianaki E, Mortaza S, Cordioli RL, Lefebvre JC, Rey N, Piquilloud L, Sferrazza Papa GF, Sferrazza-Papa GF, Mercat A, Brochard L. Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 2013; 39:2003-10. [PMID: 23928898 DOI: 10.1007/s00134-013-3032-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Pressure preset ventilation (PPV) modes with set inspiratory time can be classified according to their ability to synchronize pressure delivery with patient's inspiratory efforts (i-synchronization). Non-i-synchronized (like airway pressure release ventilation, APRV), partially i-synchronized (like biphasic airway pressure), and fully i-synchronized modes (like assist-pressure control) can be distinguished. Under identical ventilatory settings across PPV modes, the degree of i-synchronization may affect tidal volume (VT), transpulmonary pressure (PTP), and their variability. We performed bench and clinical studies. METHODS In the bench study, all the PPV modes of five ventilators were tested with an active lung simulator. Spontaneous efforts of -10 cmH2O at rates of 20 and 30 breaths/min were simulated. Ventilator settings were high pressure 30 cmH2O, positive end-expiratory pressure (PEEP) 15 cmH2O, frequency 15 breaths/min, and inspiratory to expiratory ratios (I:E) 1:3 and 3:1. In the clinical studies, data from eight intubated patients suffering from acute respiratory distress syndrome (ARDS) and ventilated with APRV were compared to the bench tests. In four additional ARDS patients, each of the PPV modes was compared. RESULTS As the degree of i-synchronization among the different PPV modes increased, mean VT and PTP swings markedly increased while breathing variability decreased. This was consistent with clinical comparison in four ARDS patients. Observational results in eight ARDS patients show low VT and a high variability with APRV. CONCLUSION Despite identical ventilator settings, the different PPV modes lead to substantial differences in VT, PTP, and breathing variability in the presence spontaneous efforts. Clinicians should be aware of the possible harmful effects of i-synchronization especially when high VT is undesirable.
Collapse
Affiliation(s)
- J C M Richard
- Intensive Care Unit, University Hospital of Geneva, 4 Rue Gabrielle Perret-Gentil, 1211, Genève 14, Switzerland,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Extracorporeal life support for adults with severe acute respiratory failure. THE LANCET RESPIRATORY MEDICINE 2013; 2:154-64. [PMID: 24503270 DOI: 10.1016/s2213-2600(13)70197-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracorporeal life support (ECLS) is an artificial means of maintaining adequate oxygenation and carbon dioxide elimination to enable injured lungs to recover from underlying disease. Technological advances have made ECLS devices smaller, less invasive, and easier to use. ECLS might, therefore, represent an important step towards improved management and outcomes of patients with acute respiratory distress syndrome. Nevertheless, rigorous evidence of the ability of ECLS to improve short-term and long-term outcomes is needed before it can be widely implemented. Moreover, how to select patients and the timing and indications for ECLS in severe acute respiratory distress syndrome remain unclear. We describe the physiological principles, the putative risks and benefits, and the clinical evidence supporting the use of ECLS in patients with acute respiratory distress syndrome. Additionally, we discuss controversies and future directions, such as novel technologies and indications, mechanical ventilation of the native lung during ECLS, and ethics considerations.
Collapse
|
33
|
Abstract
OBJECTIVES To calculate an index (termed Pmusc/Eadi index) relating the pressure generated by the respiratory muscles (Pmusc) to the electrical activity of the diaphragm (Eadi), during assisted mechanical ventilation and to assess if the Pmusc/Eadi index is affected by the type and level of ventilator assistance. The Pmusc/Eadi index was also used to measure the patient's inspiratory effort from Eadi without esophageal pressure. DESIGN Crossover study. SETTING One general ICU. PATIENTS Ten patients undergoing assisted ventilation. INTERVENTION Pressure support and neurally adjusted ventilator assist delivered, each, at three levels of ventilatory assistance. MEASUREMENT AND MAIN RESULTS Airways flow and pressure, esophageal pressure, and Eadi were continuously recorded. Sixty tidal volumes for each ventilator settings were analyzed off-line, at three time points during inspiration. For each time point, Pmusc/Eadi index was calculated. Pmusc/Eadi index was also calculated from airway pressure drop during end-expiratory occlusions. Pmusc/Eadi index was very variable among patients, but within one patient it was not affected by type and level of ventilator assistance. Pmusc/Eadi index decreased during the inspiration. Pmusc/Eadi index obtained during an occlusion from airway pressure swing was tightly correlated with that derived from esophageal pressure during tidal ventilation and allowed to estimate pressure time product. CONCLUSIONS Pmusc is tightly related to Eadi, by a proportionality coefficient that we termed Pmusc/Eadi index, stable within each patient under different conditions of ventilator assistance. The derivation of the Pmusc/Eadi index from Eadi and airway pressure during an expiratory occlusion enables a continuous estimate of patient's inspiratory effort.
Collapse
|
34
|
Abstract
Sedation is used almost universally in the care of critically ill patients, especially in those who require mechanical ventilatory support or other life-saving invasive procedures. This review will focus on the sedation strategies for critically ill patients and the pharmacology of commonly used sedative agents. The role of neuromuscular blocking agents in the ICU will be examined and the pharmacology of commonly used agents is reviewed. Finally a strategy for rational use of these sedative and neuromuscular blocking agents in critically ill patients will be proposed.
Collapse
Affiliation(s)
- Annop Piriyapatsom
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
35
|
The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013; 41:536-45. [PMID: 23263584 DOI: 10.1097/ccm.0b013e3182711972] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The benefits of spontaneous breathing over muscle paralysis have been proven mainly in mild lung injury; no one has yet evaluated the effects of spontaneous breathing in severe lung injury. We investigated the effects of spontaneous breathing in two different severities of lung injury compared with muscle paralysis. DESIGN Prospective, randomized, animal study. SETTING University animal research laboratory. SUBJECTS Twenty-eight New Zealand white rabbits. INTERVENTIONS Rabbits were randomly divided into the mild lung injury (surfactant depletion) group or severe lung injury (surfactant depletion followed by injurious mechanical ventilation) group and ventilated with 4-hr low tidal volume ventilation with spontaneous breathing or without spontaneous breathing (prevented by a neuromuscular blocking agent). Inspiratory pressure was adjusted to control tidal volume to 5-7 mL/kg, maintaining a plateau pressure less than 30 cm H2O. Dynamic CT was used to evaluate changes in lung aeration and the regional distribution of tidal volume. MEASUREMENTS AND RESULTS In mild lung injury, spontaneous breathing improved oxygenation and lung aeration by redistribution of tidal volume to dependent lung regions. However, in severe lung injury, spontaneous breathing caused a significant increase in atelectasis with cyclic collapse. Because of the severity of lung injury, this group had higher plateau pressure and more excessive spontaneous breathing effort, resulting in the highest transpulmonary pressure and the highest driving pressure. Although no improvements in lung aeration were observed, muscle paralysis with severe lung injury resulted in better oxygenation, more even tidal ventilation, and less histological lung injury. CONCLUSIONS In animals with mild lung injury, spontaneous breathing was beneficial to lung recruitment; however, in animals with severe lung injury, spontaneous breathing could worsen lung injury, and muscle paralysis might be more protective for injured lungs by preventing injuriously high transpulmonary pressure and high driving pressure.
Collapse
|
36
|
Pichot C, Petitjeans F, Ghignone M, Quintin L. Is there a place for pressure-support ventilation and high positive end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute respiratory distress syndrome? Med Hypotheses 2013; 80:732-7. [PMID: 23561575 DOI: 10.1016/j.mehy.2013.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 01/16/2013] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with a high mortality linked primarily to co-morbidities (sepsis, cardiac failure, multiple organ failure, etc.). When the lung is the single failing organ, quick resolution of ARDS should skip some complications arising from a prolonged stay in the critical care unit. In severe ARDS (PaO2/FIO2=P/F<100 with positive end-expiratory pressure (PEEP) ≥ 5 cm H2O), current recommendations are to intubate the trachea of the patient and use mechanical ventilation, low tidal volume, high PEEP, prone positioning and possibly neuromuscular blockade in association with intravenous sedation. Another strategy is possible. Firstly, spontaneous ventilation (SV) coupled with pressure support (PS) ventilation and high PEEP is possible from tracheal intubation onwards, with the possible exception of the short period following immediately tracheal intubation. Secondly, using alpha-2 adrenergic agonists (e.g. clonidine, dexmedetomidine) can provide first-line sedation from the beginning of mechanical ventilation, as they preserve respiratory drive, lower oxygen consumption and pulmonary hypertension and increase diuresis. Alpha-2 agonists are to be supplemented, if appropriate, by drugs devoid of effect on respiratory drive (neuroleptics, etc.). The expected benefits would be to prevent acquired diaphragmatic weakness, accumulation of sedation, cognitive dysfunction, and presumably improved outcome. This hypothesis should be tested in a double blind randomized controlled trial.
Collapse
Affiliation(s)
- C Pichot
- Department of Physiology, University of Lyon, EA 4612: Neurocardiology, Lyon, France
| | | | | | | |
Collapse
|
37
|
Mauri T, Bellani G, Grasselli G, Confalonieri A, Rona R, Patroniti N, Pesenti A. Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med 2013; 39:282-91. [PMID: 23196419 DOI: 10.1007/s00134-012-2755-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 10/11/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE Patients with acute respiratory distress syndrome (ARDS) requiring extracorporeal membrane oxygenation (ECMO) usually present very low respiratory system compliance (Cst(rs)) values (i.e., severe restrictive respiratory syndrome patients). As a consequence, they are at high risk of experiencing poor patient-ventilator interaction during assisted breathing. We hypothesized that monitoring of diaphragm electrical activity (EAdi) may enhance asynchrony assessment and that neurally adjusted ventilatory assist (NAVA) may reduce asynchrony, especially in more severely restricted patients. METHODS We enrolled ten consecutive ARDS patients with very low Cst(rs) values undergoing ECMO after switching from controlled to pressure support ventilation (PSV). We randomly tested (30 min) while recording EAdi: (1) PSV30 (PSV with an expiratory trigger at 30 % of flow peak value); (2) PSV1 (PSV with expiratory trigger at 1 %); (3) NAVA. During each step, we measured the EAdi-based asynchrony index (AI(EAdi)) = flow-, pressure- and EAdi-based asynchrony events/EAdi-based respiratory rate × 100. RESULTS AI(EAdi) was high during all ventilation modes, and the most represented asynchrony pattern was specific for this population (i.e., premature cycling). NAVA was associated with significantly decreased, although suboptimal, AI(EAdi) values in comparison to PSV30 and PSV1 (p < 0.01 for both). The PSV30-NAVA and PSV1-NAVA differences in AI(EAdi) values were inversely correlated with patients' Cst(rs) (R (2) = 0.545, p = 0.01 and R (2) = 0.425, p < 0.05; respectively). CONCLUSIONS EAdi allows accurate analysis of asynchrony patterns and magnitude in ARDS patients with very low Cst(rs) undergoing ECMO. In these patients, NAVA is associated with reduced asynchrony.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Brochard L, Martin GS, Blanch L, Pelosi P, Belda FJ, Jubran A, Gattinoni L, Mancebo J, Ranieri VM, Richard JCM, Gommers D, Vieillard-Baron A, Pesenti A, Jaber S, Stenqvist O, Vincent JL. Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Crit Care 2012; 16:219. [PMID: 22546221 PMCID: PMC3681336 DOI: 10.1186/cc11146] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monitoring plays an important role in the current management of patients with acute respiratory failure but sometimes lacks definition regarding which 'signals' and 'derived variables' should be prioritized as well as specifics related to timing (continuous versus intermittent) and modality (static versus dynamic). Many new techniques of respiratory monitoring have been made available for clinical use recently, but their place is not always well defined. Appropriate use of available monitoring techniques and correct interpretation of the data provided can help improve our understanding of the disease processes involved and the effects of clinical interventions. In this consensus paper, we provide an overview of the important parameters that can and should be monitored in the critically ill patient with respiratory failure and discuss how the data provided can impact on clinical management.
Collapse
Affiliation(s)
- Laurent Brochard
- Department of Intensive Care, Hôpitaux Universitaires de Genève, Rue
Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland; and Université de
Genève, Switzerland
| | - Greg S Martin
- Division of Pulmonary, Allergy and Critical Care, Emory University School of
Medicine, Grady Memorial Hospital, 615 Michael Street, Suite 205, Atlanta, GA
30322, USA
| | - Lluis Blanch
- Critical Care Center, Corporacio Sanitaria Universitària Parc Tauli,
Universitat Autònoma de Barcelona, 08208 Sabadell, Spain, CIBER Enfermedades
Respiratorias, ISCiii, Madrid, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa,
San Martino Hospital, Largo Rosanna Benzi 8 16132, Genoa, Italy
| | - F Javier Belda
- Department of Anesthesia and Surgical Critical Care, Hospital Clínico
Universitario, Avda Blasco Ibañez 17, 46010 Valencia, Spain
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Edward Hines Jr. VA Hospital,
111N, 5th Avenue and Roosevelt Road, Hines, IL 60141, USA
| | - Luciano Gattinoni
- Dipartimento di Anestesiologia, Terapia Intensive e Scienze Dermatologiche, and
Dipartimento do Anestesia, Rianimazione (Intensive e Subintensiva) e Terapia del
Dolore, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico,
Università degli Studi di Milano, via F, Sforza 35, 20122, Milan, Italy
| | - Jordi Mancebo
- Servicio Medicina Intensiva, Hospital de la Santa Creu i Sant Pau, Carrer St.
Quintí 89, 08041 Barcelona, Spain
| | - V Marco Ranieri
- Department of Anesthesia and Intensive Care Medicine, University of Turin, S.
Giovanni Battista, Molinette Hospital, Corso Dogliotti 14, 10126 Turin, Italy
| | - Jean-Christophe M Richard
- Department of Intensive Care, Hôpitaux Universitaires de Genève, Rue
Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland; and Université de
Genève, Switzerland
| | - Diederik Gommers
- Adult Intensive Care, Erasmus MC, Room H623, 's Gravendijkwal 230, 3015CE
Rotterdam, The Netherlands
| | - Antoine Vieillard-Baron
- Intensive Care Unit, Section Thorax - Vascular disease - Abdomen - Metabolism, CHU
Ambroise Paré, 9 avenue Charles-de-Gaulle, 92104 Boulogne, France
| | - Antonio Pesenti
- Anesthesia and Intensive Care, University of Milan-Bicocca, A.O. Ospedale S.
Gerardo, Via Pergolesi 33, 20900 Monza, Italy
| | - Samir Jaber
- Department of Critical Care Medicine and Anesthesiology, Saint Eloi University
Hospital and Montpellier School of Medicine, 80 Avenue Augustin Fliche, 34295
Montpellier - Cedex 5, France
| | - Ola Stenqvist
- Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital,
Bla Straket 5, Gothenburg, SE 413 45, Sweden
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles,
808 route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
39
|
Rozé H, Ouattara A. Use of neural trigger during neurally adjusted ventilatory assist in a patient with a large broncho-pleural fistula and air leakage. Intensive Care Med 2012; 38:922-3. [PMID: 22349429 DOI: 10.1007/s00134-012-2515-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2012] [Indexed: 11/26/2022]
|
40
|
Current World Literature. Curr Opin Anaesthesiol 2012; 25:260-9. [DOI: 10.1097/aco.0b013e3283521230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Abstract
PURPOSE OF REVIEW New developments in mechanical ventilation have focused on increasing the patient's control of the ventilator by implementing information on lung mechanics and respiratory drive. Effort-adapted modes of assisted breathing are presented and their potential advantages are discussed. RECENT FINDINGS Adaptive support ventilation, proportional assist ventilation with load adjustable gain factors and neurally adjusted ventilatory assist are ventilatory modes that follow the concept of adapting the assist to a defined target, instantaneous changes in respiratory drive or lung mechanics. Improved patient ventilator interaction, sufficient unloading of the respiratory muscles and increased comfort have been recently associated with these ventilator modalities. There are, however, scarce data with regard to outcome improvement, such as length of mechanical ventilation, ICU stay or mortality (commonly accepted targets to demonstrate clinical superiority). SUMMARY Within recent years, a major step forward in the evolution of assisted (effort-adapted) modes of mechanical ventilation was accomplished. There is growing evidence that supports the physiological concept of closed-loop effort-adapted assisted modes of mechanical ventilation. However, at present, the translation into a clear outcome benefit remains to be proven. In order to fill the knowledge gap that impedes the broader application, larger randomized controlled trials are urgently needed. However, with clearly proven drawbacks of conventional assisted modes such as pressure support ventilation, it is probably about time to leave these modes introduced decades ago behind.
Collapse
|
42
|
Karcz M, Vitkus A, Papadakos PJ, Schwaiberger D, Lachmann B. State-of-the-art mechanical ventilation. J Cardiothorac Vasc Anesth 2011; 26:486-506. [PMID: 21601477 DOI: 10.1053/j.jvca.2011.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/01/2023]
Affiliation(s)
- Marcin Karcz
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|