1
|
Rali AS, Tran L, Balakrishna A, Senussi M, Kapur NK, Metkus T, Tedford RJ, Lindenfeld J. Guide to Lung-Protective Ventilation in Cardiac Patients. J Card Fail 2024; 30:829-837. [PMID: 38513887 DOI: 10.1016/j.cardfail.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
The incidence of acute respiratory insufficiency has continued to increase among patients admitted to modern-day cardiovascular intensive care units. Positive pressure ventilation (PPV) remains the mainstay of treatment for these patients. Alterations in intrathoracic pressure during PPV has distinct effects on both the right and left ventricles, affecting cardiovascular performance. Lung-protective ventilation (LPV) minimizes the risk of further lung injury through ventilator-induced lung injury and, hence, an understanding of LPV and its cardiopulmonary interactions is beneficial for cardiologists.
Collapse
Affiliation(s)
- Aniket S Rali
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN.
| | - Lena Tran
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN
| | - Aditi Balakrishna
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Mourad Senussi
- Department of Medicine, Baylor St. Luke's Medical Center, Houston, TX
| | - Navin K Kapur
- Division of Cardiovascular Diseases, Tufts Medical Center, Boston, MA
| | - Thomas Metkus
- Departments of Medicine and Surgery, Divisions of Cardiology and Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan J Tedford
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC
| | - Joann Lindenfeld
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Mueller-Graf F, Frenkel P, Merz J, Reuter S, Vollmar B, Tusman G, Pulletz S, Böhm SH, Zitzmann A, Reuter DA, Adler A. Respiratory gating improves correlation between pulse wave transit time and pulmonary artery pressure in experimental pulmonary hypertension. Physiol Meas 2024; 45:03NT02. [PMID: 38422512 DOI: 10.1088/1361-6579/ad2eb5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Objective. Since pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases it was suggested as a potential non-invasive surrogate for PAP. The state of tidal lung filling is also known to affect PWTT independently of PAP. The aim of this retrospective analysis was to test whether respiratory gating improved the correlation coefficient between PWTT and PAP.Approach. In each one of five anesthetized and mechanically ventilated pigs two high-fidelity pressure catheters were placed, one directly behind the pulmonary valve, and the second one in a distal branch of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 and animals were ventilated in a pressure controlled mode (I:E ratio 1:2, respiratory rate 12/min, tidal volume of 6 ml kg-1). All signals were recorded using the multi-channel platform PowerLab®. The arrival of the pulse wave at each catheter tip was determined using a MATLAB-based modified hyperbolic tangent algorithm and PWTT calculated as the time interval between these arrivals.Main results. Correlation coefficient for PWTT and mean PAP wasr= 0.932 for thromboxane. This correlation coefficient increased considerably when heart beats either at end-inspiration (r= 0.978) or at end-expiration (r= 0.985) were selected (=respiratory gating).Significance. The estimation of mean PAP from PWTT improved significantly when taking the respiratory cycle into account. Respiratory gating is suggested to improve for the estimation of PAP by PWTT.
Collapse
Affiliation(s)
- Fabian Mueller-Graf
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, D-18057 Rostock, Germany
| | - Paul Frenkel
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | - Jonas Merz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | - Susanne Reuter
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, D-18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, D-18057 Rostock, Germany
| | - Gerardo Tusman
- Department of Anesthesiology, Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, Argentina
| | - Sven Pulletz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | - Stephan H Böhm
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | - Amelie Zitzmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | - Daniel A Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
3
|
Szrama J, Gradys A, Bartkowiak T, Woźniak A, Kusza K, Molnar Z. Intraoperative Hypotension Prediction—A Proactive Perioperative Hemodynamic Management—A Literature Review. Medicina (B Aires) 2023; 59:medicina59030491. [PMID: 36984493 PMCID: PMC10057151 DOI: 10.3390/medicina59030491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Intraoperative hypotension (IH) is a frequent phenomenon affecting a substantial number of patients undergoing general anesthesia. The occurrence of IH is related to significant perioperative complications, including kidney failure, myocardial injury, and even increased mortality. Despite advanced hemodynamic monitoring and protocols utilizing goal directed therapy, our management is still reactive; we intervene when the episode of hypotension has already occurred. This literature review evaluated the Hypotension Prediction Index (HPI), which is designed to predict and reduce the incidence of IH. The HPI algorithm is based on a machine learning algorithm that analyzes the arterial pressure waveform as an input and the occurrence of hypotension with MAP <65 mmHg for at least 1 min as an output. There are several studies, both retrospective and prospective, showing a significant reduction in IH episodes with the use of the HPI algorithm. However, the level of evidence on the use of HPI remains very low, and further studies are needed to show the benefits of this algorithm on perioperative outcomes.
Collapse
Affiliation(s)
- Jakub Szrama
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence: ; Tel.: +48-618-691-856
| | - Agata Gradys
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Tomasz Bartkowiak
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Amadeusz Woźniak
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Krzysztof Kusza
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Zsolt Molnar
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Mueller-Graf F, Frenkel P, Albus CF, Henkel M, Reuter S, Vollmar B, Tusman G, Adler A, Pulletz S, Böhm SH, Zitzmann A, Reuter DA. Ventilation Induces Changes in Pulse Wave Transit Time in the Pulmonary Artery. Biomedicines 2023; 11:biomedicines11010182. [PMID: 36672690 PMCID: PMC9855784 DOI: 10.3390/biomedicines11010182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases and was therefore suggested as a surrogate parameter for PAP. The aim of this analysis was to reveal patterns and potential mechanisms of ventilation-induced periodic changes in PWTT under resting conditions. To measure both PWTT and PAP in five healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature: one with the tip placed in the pulmonary artery trunk, and a second one placed in a distal segment of the pulmonary artery. Animals received pressure-controlled mechanical ventilation. Ventilation-dependent changes were seen in both variables, PWTT and mean PAP; however, changes in PWTT were not synchronous with changes in PAP. Thus, plotting the value of PWTT for each heartbeat over the respective PAP revealed a characteristic hysteresis. At the beginning of inspiration, PAP rose while PWTT remained constant. During further inspiration, PWTT started to decrease rapidly as mPAP was about to reach its plateau. The same time course was observed during expiration: while mPAP approached its minimum, PWTT increased rapidly. During apnea this hysteresis disappeared. Thus, non-synchronous ventilation-induced changes in PWTT and PAP were found with inspiration causing a significant shortening of PWTT. Therefore, it is suggested that the respiratory cycle should be considered when using PWTT as a surrogate for PAP.
Collapse
Affiliation(s)
- Fabian Mueller-Graf
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-146232
| | - Paul Frenkel
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Chiara Felicitas Albus
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Maike Henkel
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Susanne Reuter
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany
| | - Gerardo Tusman
- Department of Anesthesiology, Hospital Privado de Comunidad, Mar de Plata 7600, Argentina
| | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Sven Pulletz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Stephan H. Böhm
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Amelie Zitzmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
5
|
Berger D, Wigger O, de Marchi S, Grübler MR, Bloch A, Kurmann R, Stalder O, Bachmann KF, Bloechlinger S. The effects of positive end-expiratory pressure on cardiac function: a comparative echocardiography-conductance catheter study. Clin Res Cardiol 2022; 111:705-719. [PMID: 35381904 PMCID: PMC9151717 DOI: 10.1007/s00392-022-02014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
Abstract
Background Echocardiographic parameters of diastolic function depend on cardiac loading conditions, which are altered by positive pressure ventilation. The direct effects of positive end-expiratory pressure (PEEP) on cardiac diastolic function are unknown. Methods Twenty-five patients without apparent diastolic dysfunction undergoing coronary angiography were ventilated noninvasively at PEEPs of 0, 5, and 10 cmH2O (in randomized order). Echocardiographic diastolic assessment and pressure–volume-loop analysis from conductance catheters were compared. The time constant for pressure decay (τ) was modeled with exponential decay. End-diastolic and end-systolic pressure volume relationships (EDPVRs and ESPVRs, respectively) from temporary caval occlusion were analyzed with generalized linear mixed-effects and linear mixed models. Transmural pressures were calculated using esophageal balloons. Results τ values for intracavitary cardiac pressure increased with the PEEP (n = 25; no PEEP, 44 ± 5 ms; 5 cmH2O PEEP, 46 ± 6 ms; 10 cmH2O PEEP, 45 ± 6 ms; p < 0.001). This increase disappeared when corrected for transmural pressure and diastole length. The transmural EDPVR was unaffected by PEEP. The ESPVR increased slightly with PEEP. Echocardiographic mitral inflow parameters and tissue Doppler values decreased with PEEP [peak E wave (n = 25): no PEEP, 0.76 ± 0.13 m/s; 5 cmH2O PEEP, 0.74 ± 0.14 m/s; 10 cmH2O PEEP, 0.68 ± 0.13 m/s; p = 0.016; peak A wave (n = 24): no PEEP, 0.74 ± 0.12 m/s; 5 cmH2O PEEP, 0.7 ± 0.11 m/s; 10 cmH2O PEEP, 0.67 ± 0.15 m/s; p = 0.014; E’ septal (n = 24): no PEEP, 0.085 ± 0.016 m/s; 5 cmH2O PEEP, 0.08 ± 0.013 m/s; 10 cmH2O PEEP, 0.075 ± 0.012 m/s; p = 0.002]. Conclusions PEEP does not affect active diastolic relaxation or passive ventricular filling properties. Dynamic echocardiographic filling parameters may reflect changing loading conditions rather than intrinsic diastolic function. PEEP may have slight positive inotropic effects. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT02267291, registered 17. October 2014. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-022-02014-1.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Olivier Wigger
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Klinik Für Kardiologie, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Stefano de Marchi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin R Grübler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Bloch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Zentrum Für Intensivmedizin, Kantonsspital Luzern, Luzern, Switzerland
| | - Reto Kurmann
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Klinik Für Kardiologie, Kantonsspital Luzern, Luzern, Switzerland
| | | | - Kaspar Felix Bachmann
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Zentrum Für Intensivmedizin, Kantonsspital Luzern, Luzern, Switzerland
- Department of Anesthesiology and Pain Medicine, Inselspital, Bern University Hospital,, University of Bern, Bern, Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Klinik Für Kardiologie, Kantonsspital Winterthur, Winterthur, Switzerland
| |
Collapse
|
6
|
Nguyen M, Mallat J, Marc J, Abou-Arab O, Bouhemad B, Guinot PG. Arterial Load and Norepinephrine Are Associated With the Response of the Cardiovascular System to Fluid Expansion. Front Physiol 2021; 12:707832. [PMID: 34421648 PMCID: PMC8371483 DOI: 10.3389/fphys.2021.707832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fluid responsiveness has been extensively studied by using the preload prism. The arterial load might be a factor modulating the fluid responsiveness. The norepinephrine (NE) administration increases the arterial load and modifies the vascular properties. The objective of the present study was to determine the relationship between fluid responsiveness, preload, arterial load, and NE use. We hypothesized that as a preload/arterial load, NE use may affect fluid responsiveness. METHODS The retrospective multicentered analysis of the pooled data from 446 patients monitored using the transpulmonary thermodilution before and after fluid expansion (FE) was performed. FE was standardized between intensive care units (ICUs). The comparison of patients with and without NE at the time of fluid infusion was performed. Stroke volume (SV) responsiveness was defined as an increase of more than 15% of SV following the FE. Pressure responsiveness was defined as an increase of more than 15% of mean arterial pressure (MAP) following the FE. Arterial elastance was used as a surrogate for the arterial load. RESULTS A total of 244 patients were treated with NE and 202 were not treated with NE. By using the univariate analysis, arterial elastance was correlated to SV variations with FE. However, the SV variations were not associated with NE administration (26 [15; 46]% vs. 23 [10; 37]%, p = 0.12). By using the multivariate analysis, high arterial load and NE administration were associated with fluid responsiveness. The association between arterial elastance and fluid responsiveness was less important in patients treated with NE. Arterial compliance increased in the absence of NE, but it did not change in patients treated with NE (6 [-8; 19]% vs. 0 [-13; 15]%, p = 0.03). The changes in total peripheral and arterial elastance were less important in patients treated with NE (-8 [-17; 1]% vs. -11 [-20; 0]%, p < 0.05 and -10 [-19; 0]% vs. -16 [-24; 0]%, p = 0.01). CONCLUSION The arterial load and NE administration were associated with fluid responsiveness. A high arterial load was associated with fluid responsiveness. In patients treated with NE, this association was lower, and the changes of arterial load following FE seemed to be driven mainly by its resistive component.
Collapse
Affiliation(s)
- Maxime Nguyen
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire, Dijon, France
- Lipness Team, INSERM Research Center LNC-UMR 1231 and LabExLipSTIC, University of Burgundy, Dijon, France
| | - Jihad Mallat
- Department of Anaesthesiology and Intensive Care, Centre Hospitalier, Lens, France
| | - Julien Marc
- Department of Anaesthesiology and Intensive Care, Centre Hospitalier, Lens, France
| | - Osama Abou-Arab
- Department of Anaesthesiology and Intensive Care, Centre Hospitalier Universitaire, Amiens, France
| | - Bélaïd Bouhemad
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire, Dijon, France
- Lipness Team, INSERM Research Center LNC-UMR 1231 and LabExLipSTIC, University of Burgundy, Dijon, France
| | - Pierre-Grégoire Guinot
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire, Dijon, France
- Lipness Team, INSERM Research Center LNC-UMR 1231 and LabExLipSTIC, University of Burgundy, Dijon, France
| |
Collapse
|
7
|
Florio G, De Santis Santiago RR, Fumagalli J, Imber DA, Marrazzo F, Sonny A, Bagchi A, Fitch AK, Anekwe CV, Amato MBP, Arora P, Kacmarek RM, Berra L. Pleural Pressure Targeted Positive Airway Pressure Improves Cardiopulmonary Function in Spontaneously Breathing Patients With Obesity. Chest 2021; 159:2373-2383. [PMID: 34099131 DOI: 10.1016/j.chest.2021.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Increased pleural pressure affects the mechanics of breathing of people with class III obesity (BMI > 40 kg/m2). RESEARCH QUESTION What are the acute effects of CPAP titrated to match pleural pressure on cardiopulmonary function in spontaneously breathing patients with class III obesity? STUDY DESIGN AND METHODS We enrolled six participants with BMI within normal range (control participants, group I) and 12 patients with class III obesity (group II) divided into subgroups: IIa, BMI of 40 to 50 kg/m2; and IIb, BMI of ≥ 50 kg/m2. The study was performed in two phases: in phase 1, participants were supine and breathing spontaneously at atmospheric pressure, and in phase 2, participants were supine and breathing with CPAP titrated to match their end-expiratory esophageal pressure in the absence of CPAP. Respiratory mechanics, esophageal pressure, and hemodynamic data were collected, and right heart function was evaluated by transthoracic echocardiography. RESULTS The levels of CPAP titrated to match pleural pressure in group I, subgroup IIa, and subgroup IIb were 6 ± 2 cmH2O, 12 ± 3 cmH2O, and 18 ± 4 cmH2O, respectively. In both subgroups IIa and IIb, CPAP titrated to match pleural pressure decreased minute ventilation (IIa, P = .03; IIb, P = .03), improved peripheral oxygen saturation (IIa, P = .04; IIb, P = .02), improved homogeneity of tidal volume distribution between ventral and dorsal lung regions (IIa, P = .22; IIb, P = .03), and decreased work of breathing (IIa, P < .001; IIb, P = .003) with a reduction in both the work spent to initiate inspiratory flow as well as tidal ventilation. In five hypertensive participants with obesity, BP decreased to normal range, without impairment of right heart function. INTERPRETATION In ambulatory patients with class III obesity, CPAP titrated to match pleural pressure decreased work of breathing and improved respiratory mechanics while maintaining hemodynamic stability, without impairing right heart function. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT02523352; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Gaetano Florio
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Jacopo Fumagalli
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A Imber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Francesco Marrazzo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Abraham Sonny
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Aranya Bagchi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Angela K Fitch
- Weight Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Chika V Anekwe
- Weight Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Marcelo Britto Passos Amato
- Pulmonary Division, Cardio-Pulmonary Department, Heart Institute (Incor), Hospital Das Clinicas da FMUSP, University of São Paulo, São Paulo, Brazil
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Robert M Kacmarek
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Respiratory Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Respiratory Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
Duclos G, Bazalguette F, Allaouchiche B, Mohammedi N, Lopez A, Gazon M, Besch G, Bouvet L, Muller L, Mathon G, Arbelot C, Boucekine M, Leone M, Zieleskiewicz L. Can Thoracic Ultrasound on Admission Predict the Outcome of Critically Ill Patients with SARS-CoV-2? A French Multi-Centric Ancillary Retrospective Study. Adv Ther 2021; 38:2599-2612. [PMID: 33852149 PMCID: PMC8045017 DOI: 10.1007/s12325-021-01702-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks have led to massive admissions to intensive care units (ICUs). An ultrasound examination of the thorax is widely performed on admission in these patients. The primary objective of our study was to assess the performance of the lung ultrasound score (LUS) on ICU admission to predict the 28-day mortality rate in patients with SARS-CoV-2. The secondary objective was to asses the performance of thoracic ultrasound and biological markers of cardiac injury to predict mortality. Methods This multicentre, retrospective, observational study was conducted in six ICUs of four university hospitals in France from 15 March to 3 May 2020. Patients admitted to ICUs because of SARS-CoV-2-related acute respiratory failure and those who received an LUS examination at admission were included. The area under the receiver-operating characteristics (ROC) curve was determined for the LUS score to predict the 28-day mortality rate. The same analysis was performed for the Simplified Acute Physiology Score, left ventricular ejection fraction, cardiac output, brain natriuretic peptide and ultra-sensitive troponin levels at admission. Results In 57 patients, the 28-day mortality rate was 21%. The area under the ROC curve of the LUS score value on ICU admission was 0.68 [95% CI 0.54–0.82; p = 0.05]. In non-intubated patients on ICU admission (n = 40), the area under the ROC curves was 0.84 [95% CI 0.70–0.97; p = 0.005]. The best cut-off of 22 corresponded to 85% specificity and 83% sensitivity. Conclusions LUS scores on ICU admission for SARS-CoV-2 did not efficiently predict the 28-day mortality rate. Performance was better for non-intubated patients at admission. Performance of biological cardiac markers may be equivalent to the LUS score. Supplementary Information The online version contains supplementary material available at 10.1007/s12325-021-01702-0.
Collapse
Affiliation(s)
- Gary Duclos
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Nord Hospital, Marseille, France.
| | - Florian Bazalguette
- CHU de Nîmes-Caremeau, Service Réanimation et Surveillance Continue, Pôle ARDU (anesthésie, réanimation, douleur, urgences), 30029, Nîmes cedex, France
| | - Bernard Allaouchiche
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Réanimation, 69310, Pierre-Bénite, France
- Université Claude, Bernard-Lyon-1, Lyon, France
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, UPSP 2016.A101, Pulmonary and Cardiovascular Agression in Sepsis APCSe, 69280, Marcy l'Étoile, France
| | - Neyla Mohammedi
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Nord Hospital, Marseille, France
| | - Alexandre Lopez
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Nord Hospital, Marseille, France
| | - Mathieu Gazon
- Département d'Anesthésie et Réanimation and Centre de Recherche Clinique, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Besch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
- EA 3920, University of Franche-Comte, Besancon, France
| | - Lionel Bouvet
- Service d'Anesthésie Réanimation, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, UPSP 2016.A101, Pulmonary and Cardiovascular Aggression in Sepsis, 69280, Marcy l'Étoile, France
| | - Laurent Muller
- CHU de Nîmes-Caremeau, Service Réanimation et Surveillance Continue, Pôle ARDU (anesthésie, réanimation, douleur, urgences), 30029, Nîmes cedex, France
| | - Gauthier Mathon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Réanimation, 69310, Pierre-Bénite, France
| | - Charlotte Arbelot
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Nord Hospital, Marseille, France
| | - Mohamed Boucekine
- Centre d'Etudes et de Recherches Sur Les Services de Santé et Qualité, Faculté de Médecine, Aix-Marseille université, Marseille, France
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Nord Hospital, Marseille, France
| | - Laurent Zieleskiewicz
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Nord Hospital, Marseille, France
- Center for Cardiovascular and Nutrition Research (C2VN), Aix Marseille University, INSERM, INRA, Marseille, France
| |
Collapse
|
9
|
Behem CR, Graessler MF, Friedheim T, Kluttig R, Pinnschmidt HO, Duprée A, Debus ES, Reuter DA, Wipper SH, Trepte CJC. The use of pulse pressure variation for predicting impairment of microcirculatory blood flow. Sci Rep 2021; 11:9215. [PMID: 33911116 PMCID: PMC8080713 DOI: 10.1038/s41598-021-88458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic parameters of preload have been widely recommended to guide fluid therapy based on the principle of fluid responsiveness and with regard to cardiac output. An equally important aspect is however to also avoid volume-overload. This accounts particularly when capillary leakage is present and volume-overload will promote impairment of microcirculatory blood flow. The aim of this study was to evaluate, whether an impairment of intestinal microcirculation caused by volume-load potentially can be predicted using pulse pressure variation in an experimental model of ischemia/reperfusion injury. The study was designed as a prospective explorative large animal pilot study. The study was performed in 8 anesthetized domestic pigs (German landrace). Ischemia/reperfusion was induced during aortic surgery. 6 h after ischemia/reperfusion-injury measurements were performed during 4 consecutive volume-loading-steps, each consisting of 6 ml kg−1 bodyweight−1. Mean microcirculatory blood flow (mean Flux) of the ileum was measured using direct laser-speckle-contrast-imaging. Receiver operating characteristic analysis was performed to determine the ability of pulse pressure variation to predict a decrease in microcirculation. A reduction of ≥ 10% mean Flux was considered a relevant decrease. After ischemia–reperfusion, volume-loading-steps led to a significant increase of cardiac output as well as mean arterial pressure, while pulse pressure variation and mean Flux were significantly reduced (Pairwise comparison ischemia/reperfusion-injury vs. volume loading step no. 4): cardiac output (l min−1) 1.68 (1.02–2.35) versus 2.84 (2.15–3.53), p = 0.002, mean arterial pressure (mmHg) 29.89 (21.65–38.12) versus 52.34 (43.55–61.14), p < 0.001, pulse pressure variation (%) 24.84 (17.45–32.22) versus 9.59 (1.68–17.49), p = 0.004, mean Flux (p.u.) 414.95 (295.18–534.72) versus 327.21 (206.95–447.48), p = 0.006. Receiver operating characteristic analysis revealed an area under the curve of 0.88 (CI 95% 0.73–1.00; p value < 0.001) for pulse pressure variation for predicting a decrease of microcirculatory blood flow. The results of our study show that pulse pressure variation does have the potential to predict decreases of intestinal microcirculatory blood flow due to volume-load after ischemia/reperfusion-injury. This should encourage further translational research and might help to prevent microcirculatory impairment due to excessive fluid resuscitation and to guide fluid therapy in the future.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Rahel Kluttig
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Duprée
- Department of Visceral- and Thoracic Surgery, Center of Operative Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Sebastian Debus
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg GmbH (UHZ), Hamburg, Germany
| | - Daniel A Reuter
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Sabine H Wipper
- University Department for Vascular Surgery, Department of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
10
|
A prospective study to validate pulmonary blood mass changes on non-contrast 4DCT in pulmonary embolism patients. Clin Imaging 2021; 78:179-183. [PMID: 33839544 DOI: 10.1016/j.clinimag.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Limited diagnostic options exist for patients with suspected pulmonary embolism (PE) who cannot undergo CT-angiogram (CTA). CT-ventilation methods recover respiratory motion-induced lung volume changes as a surrogate for ventilation. We recently demonstrated that pulmonary blood mass change, induced by tidal respiratory motion, is a potential surrogate for pulmonary perfusion. In this study, we examine blood mass and volume change in patients with PE and parenchymal lung abnormalities (PLA). METHODS A cross-sectional analysis was conducted on a prospective, cohort-study with 129 consecutive PE suspected patients. Patients received 4DCT within 48 h of CTA and were classified as having PLA and/or PE. Global volume change (VC) and percent global pulmonary blood mass change (PBM) were calculated for each patient. Associations with disease type were evaluated using quantile regression. RESULTS 68 of 129 patients were PE positive on CTA. Median change in PBM for PE-positive patients (0.056; 95% CI: 0.045, 0.068; IQR: 0.051) was smaller than that of PE-negative patients (0.077; 95% CI: 0.064, 0.089; IQR: 0.056), with an estimated difference of 0.021 (95% CI: 0.003, 0.038; p = 0.0190). PLA was detected in 57 (44.2%) patients. Median VC for PLA-positive patients (1.26; 95% CI: 1.22, 1.30; IQR: 0.15) showed no significant difference from PLA-negative VC (1.25; 95% CI: 1.21, 1.28; IQR: 0.15). CONCLUSIONS We demonstrate that pulmonary blood mass change is significantly lower in PE-positive patients compared to PE-negative patients, indicating that PBM derived from dynamic non-contrast CT is a potentially useful surrogate for pulmonary perfusion.
Collapse
|
11
|
Jabbour H, Abou Haidar M, Jabbour K, Abi Lutfallah A, Abou Zeid H, Ghanem I, Naccache N, Ayoub E. Effect of prone position without volume expansion on pulse pressure variation in spinal surgery : a prospective observational study. ACTA ANAESTHESIOLOGICA BELGICA 2021. [DOI: 10.56126/72.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background : Pulse pressure variation (PPV) is a predictor of fluid responsiveness in supine patients under mechanical ventilation. Its use has also been validated in the prone position. The aim of this study was to assess changes in PPV induced by prone position in patients undergoing spinal surgery.
Methods : Ninety-six patients aged 12 to 75 years, scheduled for elective spinal surgery were included. Patients were excluded if they had clinical signs related to any organ failure, or if they required vasoactive drugs and/or volume expansion during the early stages of anesthesia. Patients received a standardized anesthesia protocol. Fluid expansion was not allowed from induction until 10 minutes after positioning. Hemodynamic measurements recorded before the induction of anesthesia (T0) included : arterial pressure (systolic (SAP) diastolic (DAP) and mean (MAP)) and heart rate (HR). Radial artery was cannulated after intubation and measurements, as well as PPV, were noted in supine position (T1). Patients were then placed in prone position hemodynamics and PPV measurements were repeated (T2).
Results : Forty-eight patients completed the study. Anesthesia induction induced a significant decrease in SAP, DAP, and MAP with no effect on HR. Prone position did not induce any significant changes in SAP, MAP, DAP, and HR. A significant difference was found between PPV values in supine (Mean=10.5, SD=4.5) and prone positions (Mean=15.2, SD=7.1) ; t=-4.15 (p<0.001). The mean increase in PPV was 4.7%.
Conclusion : Prone position without prior volume expansion induces a significant increase in PPV prior to any modification in arterial blood pressure and heart rate.
Collapse
|
12
|
Hypopressive exercise in normotensive young women: A case series. J Bodyw Mov Ther 2020; 25:94-99. [PMID: 33714518 DOI: 10.1016/j.jbmt.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022]
Abstract
Hypopressive exercise (HE) has been contraindicated for people with cardiovascular disease because it involves isometric postures performed with low-pulmonary volume breath-holds, which are thought to increase blood pressure. The objective of this study was to analyze the hemodynamic responses to HE performed in the seated posture on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and heart rate (HR) in normotensive females. Ten women (age = 31.2 ± 6.3 years) with previous experience in HE participated. Three sets of eight breathing cycles of HE breathing were completed. The HE breathing protocol consisted of three complete breathing cycles of controlled latero-costal inhalations and slow deep exhalations followed by a breath-hold and rib-cage expansion after every third exhalation. Measurements of SBP, DBP, MAP and HR were assessed at baseline, at the end of each set and at the end of minute 5, 10, 15 and 20 during the recovery period. The measurement of hemodynamic variables used a digital photoplethysmography device. Significant differences for SBP (baseline compared to SET2, p = 0.0182) and MAP (baseline compared to SET1, p = 0.0433; and SET2, p = 0.0072) were found. No significant differences were found in the recovery periods compared with baseline. Medium effect size for HR during REC5 (ES = 0.50) and REC10 (ES = 0.56) was observed. These findings indicate that HE in the seated posture performed by normotensive females leads to significant increases in SBP and MAP with no significant increase of HR and no hypotensive effect during recovery period. Our preliminary results should be supported by future randomized controlled trials.
Collapse
|
13
|
Monge Garcia MI, Guijo González P, Saludes Orduña P, Gracia Romero M, Gil Cano A, Messina A, Rhodes A, Cecconi M. Dynamic Arterial Elastance During Experimental Endotoxic Septic Shock: A Potential Marker of Cardiovascular Efficiency. Front Physiol 2020; 11:562824. [PMID: 33123025 PMCID: PMC7567029 DOI: 10.3389/fphys.2020.562824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Dynamic arterial elastance (Eadyn), the ratio between pulse pressure variation (PPV) and stroke volume variation (SVV), has been suggested as a dynamic parameter relating pressure and flow. We aimed to determine the effects of endotoxic septic shock and hemodynamic resuscitation on Eadyn in an experimental study in 18 New Zealand rabbits. Animals received placebo (SHAM, n = 6) or intravenous lipopolysaccharide (E. Coli 055:B5, 1 mg⋅kg - 1) with or without (EDX-R, n = 6; EDX, n = 6) hemodynamic resuscitation (fluid bolus of 20 ml⋅kg - 1 and norepinephrine for restoring mean arterial pressure). Continuous arterial pressure and aortic blood flow measurements were obtained simultaneously. Cardiovascular efficiency was evaluated by the oscillatory power fraction [%Osc: oscillatory work/left ventricular (LV) total work] and the energy efficiency ratio (EER = LV total work/cardiac output). Eadyn increased in septic animals (from 0.73 to 1.70; p = 0.012) and dropped after hemodynamic resuscitation. Eadyn was related with the %Osc and EER [estimates: -0.101 (-0.137 to -0.064) and -9.494 (-11.964 to -7.024); p < 0.001, respectively]. So, the higher the Eadyn, the better the cardiovascular efficiency (lower %Osc and EER). Sepsis resulted in a reduced %Osc and EER, reflecting a better cardiovascular efficiency that was tracked by Eadyn. Eadyn could be a potential index of cardiovascular efficiency during septic shock.
Collapse
Affiliation(s)
- Manuel Ignacio Monge Garcia
- Unidad de Gestión Clínica de Cuidados Intensivos, Hospital Universitario SAS de Jerez, Jerez de la Frontera, Spain
| | - Pedro Guijo González
- Department of Intensive Care Medicine, St. George's Healthcare NHS Trust and St George's University of London, London, United Kingdom
| | - Paula Saludes Orduña
- Department of Intensive Care Medicine, St. George's Healthcare NHS Trust and St George's University of London, London, United Kingdom
| | - Manuel Gracia Romero
- Department of Intensive Care Medicine, St. George's Healthcare NHS Trust and St George's University of London, London, United Kingdom
| | - Anselmo Gil Cano
- Department of Intensive Care Medicine, St. George's Healthcare NHS Trust and St George's University of London, London, United Kingdom
| | - Antonio Messina
- Department of Intensive Care Medicine, St. George's Healthcare NHS Trust and St George's University of London, London, United Kingdom
| | - Andrew Rhodes
- Department of Anesthesia and Intensive Care Medicine, Humanitas Clinical and Research Center - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Maurizio Cecconi
- Department of Intensive Care Medicine, St. George's Healthcare NHS Trust and St George's University of London, London, United Kingdom.,Department of Anesthesia and Intensive Care Medicine, Humanitas Clinical and Research Center - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| |
Collapse
|
14
|
Russell A, Rivers EP, Giri PC, Jaehne AK, Nguyen HB. A Physiologic Approach to Hemodynamic Monitoring and Optimizing Oxygen Delivery in Shock Resuscitation. J Clin Med 2020; 9:jcm9072052. [PMID: 32629778 PMCID: PMC7408843 DOI: 10.3390/jcm9072052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
The approach to shock resuscitation focuses on all components of oxygen delivery, including preload, afterload, contractility, hemoglobin, and oxygen saturation. Resuscitation focused solely on preload and fluid responsiveness minimizes other key elements, resulting in suboptimal patient care. This review will provide a physiologic and practical approach for the optimization of oxygen delivery utilizing available hemodynamic monitoring technologies. Venous oxygen saturation (SvO2) and lactate will be discussed as indicators of shock states and endpoints of resuscitation within the framework of resolving oxygen deficit and oxygen debt.
Collapse
Affiliation(s)
- Amy Russell
- Department of Emergency Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Emanuel P. Rivers
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (E.P.R.); (A.K.J.)
- Surgical Critical Care, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Paresh C. Giri
- Division of Pulmonary, Critical Care, Hyperbaric, Allergy, and Sleep Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Anja K. Jaehne
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (E.P.R.); (A.K.J.)
| | - H. Bryant Nguyen
- Division of Pulmonary, Critical Care, Hyperbaric, Allergy, and Sleep Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
- Department of Emergency Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
- Correspondence: ; Tel.: +1-909-558-4023
| |
Collapse
|
15
|
Stohl S, Klein MJ, Ross PA, vonBusse S, Menteer J. Impact of Anesthetic and Ventilation Strategies on Invasive Hemodynamic Measurements in Pediatric Heart Transplant Recipients. Pediatr Cardiol 2020; 41:962-971. [PMID: 32556487 DOI: 10.1007/s00246-020-02344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Care of pediatric heart transplant recipients relies upon serial invasive hemodynamic evaluation, generally performed under the artificial conditions created by anesthesia and supportive ventilation. OBJECTIVES This study aimed to evaluate the hemodynamic impacts of different anesthetic and ventilatory strategies. METHODS We compared retrospectively the cardiac index, right- and left-sided filling pressures, and pulmonary and systemic vascular resistances of all clinically well and rejection-free heart transplant recipients catheterized from 2005 through 2017. Effects of spontaneous versus positive pressure ventilation and of sedation versus general anesthesia were tested with generalized linear mixed models for repeated measures using robust sandwich estimators of the covariance matrices. Least squared means showed adjusted mean outcome values, controlled for appropriate confounders. RESULTS 720 catheterizations from 101 recipients met inclusion criteria. Adjusted cardiac index was 3.14 L/min/m2 (95% CI 3.01-3.67) among spontaneously breathing and 2.71 L/min/m2 (95% CI 2.56-2.86) among ventilated recipients (p < 0.0001). With spontaneous breathing, left filling pressures were lower (9.9 vs 11.0 mmHg, p = 0.030) and systemic vascular resistances were higher (24.0 vs 20.5 Woods units, p < 0.0001). After isolating sedated from anesthetized spontaneously breathing patients, the observed differences in filling pressures and resistances emerged as a function of sedation versus general anesthesia rather than of spontaneous versus positive pressure ventilation. CONCLUSION In pediatric heart transplant recipients, positive pressure ventilation reduces cardiac output but does not alter filling pressures or vascular resistances. Moderate sedation yields lower left filling pressures and higher systemic vascular resistances than does general anesthesia. Differences are quantitatively small.
Collapse
Affiliation(s)
- Sheldon Stohl
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA. .,Department of Anesthesiology and Critical Care Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Margaret J Klein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Patrick A Ross
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA.,Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Sabine vonBusse
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA.,Department of Anesthesiology and Critical Care Medicine, University of Southern California, Los Angeles, CA, USA
| | - JonDavid Menteer
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA.,Division of Pediatric Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Monge García MI, Jian Z, Hatib F, Settels JJ, Cecconi M, Pinsky MR. Dynamic Arterial Elastance as a Ventriculo-Arterial Coupling Index: An Experimental Animal Study. Front Physiol 2020; 11:284. [PMID: 32327999 PMCID: PMC7153496 DOI: 10.3389/fphys.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/13/2020] [Indexed: 01/06/2023] Open
Abstract
Dynamic arterial elastance (Eadyn), the ratio between arterial pulse pressure and stroke volume changes during respiration, has been postulated as an index of the coupling between the left ventricle (LV) and the arterial system. We aimed to confirm this hypothesis using the gold-standard for defining LV contractility, afterload, and evaluating ventricular-arterial (VA) coupling and LV efficiency during different loading and contractile experimental conditions. Twelve Yorkshire healthy female pigs submitted to three consecutive stages with two opposite interventions each: changes in afterload (phenylephrine/nitroprusside), preload (bleeding/fluid bolus), and contractility (esmolol/dobutamine). LV pressure-volume data was obtained with a conductance catheter, and arterial pressures were measured via a fluid-filled catheter in the proximal aorta and the radial artery. End-systolic elastance (Ees), a load-independent index of myocardial contractility, was calculated during an inferior vena cava occlusion. Effective arterial elastance (Ea, an index of LV afterload) was calculated as LV end-systolic pressure/stroke volume. VA coupling was defined as the ratio Ea/Ees. LV efficiency (LVeff) was defined as the ratio between stroke work and the LV pressure-volume area. Eadyn was calculated as the ratio between the aortic pulse pressure variation (PPV) and conductance-derived stroke volume variation (SVV). A linear mixed model was used for evaluating the relationship between Ees, Ea, VA coupling, LVeff with Eadyn. Eadyn was inversely related to VA coupling and directly to LVeff. The higher the Eadyn, the higher the LVeff and the lower the VA coupling. Thus, Eadyn, an easily measured parameter at the bedside, may be of clinical relevance for hemodynamic assessment of the unstable patient.
Collapse
Affiliation(s)
| | | | - Feras Hatib
- Edwards Lifesciences, Irvine, CA, United States
| | | | - Maurizio Cecconi
- Department Anaesthesia and Intensive Care Units, Humanitas Research Hospital, Humanitas University, Milan, Italy
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Individualized Positive End-expiratory Pressure and Regional Gas Exchange in Porcine Lung Injury. Anesthesiology 2020; 132:808-824. [DOI: 10.1097/aln.0000000000003151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
In acute respiratory failure elevated intraabdominal pressure aggravates lung collapse, tidal recruitment, and ventilation inhomogeneity. Low positive end-expiratory pressure (PEEP) may promote lung collapse and intrapulmonary shunting, whereas high PEEP may increase dead space by inspiratory overdistension. The authors hypothesized that an electrical impedance tomography–guided PEEP approach minimizing tidal recruitment improves regional ventilation and perfusion matching when compared to a table-based low PEEP/no recruitment and an oxygenation-guided high PEEP/full recruitment strategy in a hybrid model of lung injury and elevated intraabdominal pressure.
Methods
In 15 pigs with oleic acid–induced lung injury intraabdominal pressure was increased by intraabdominal saline infusion. PEEP was set in randomized order: (1) guided by a PEEP/inspired oxygen fraction table, without recruitment maneuver; (2) minimizing tidal recruitment guided by electrical impedance tomography after a recruitment maneuver; and (3) maximizing oxygenation after a recruitment maneuver. Single photon emission computed tomography was used to analyze regional ventilation, perfusion, and aeration. Primary outcome measures were differences in PEEP levels and regional ventilation/perfusion matching.
Results
Resulting PEEP levels were different (mean ± SD) with (1) table PEEP: 11 ± 3 cm H2O; (2) minimal tidal recruitment PEEP: 22 ± 3 cm H2O; and (3) maximal oxygenation PEEP: 25 ± 4 cm H2O; P < 0.001. Table PEEP without recruitment maneuver caused highest lung collapse (28 ± 11% vs. 5 ± 5% vs. 4 ± 4%; P < 0.001), shunt perfusion (3.2 ± 0.8 l/min vs. 1.0 ± 0.8 l/min vs. 0.7 ± 0.6 l/min; P < 0.001) and dead space ventilation (2.9 ± 1.0 l/min vs. 1.5 ± 0.7 l/min vs. 1.7 ± 0.8 l/min; P < 0.001). Although resulting in different PEEP levels, minimal tidal recruitment and maximal oxygenation PEEP, both following a recruitment maneuver, had similar effects on regional ventilation/perfusion matching.
Conclusions
When compared to table PEEP without a recruitment maneuver, both minimal tidal recruitment PEEP and maximal oxygenation PEEP following a recruitment maneuver decreased shunting and dead space ventilation, and the effects of minimal tidal recruitment PEEP and maximal oxygenation PEEP were comparable.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
18
|
End-Expiratory Occlusion Test During Increase of Vasomotor Tone in a Rabbit Model of Hemorrhage. Sci Rep 2020; 10:1257. [PMID: 31988341 PMCID: PMC6985311 DOI: 10.1038/s41598-020-58096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022] Open
Abstract
End-expiratory occlusion test (EEOT) has been proposed as a preload responsiveness test that overcomes several limitations of pulse pressure (PPV) and stroke volume (SVV) variations. We compared the ability of EEOT versus SVV and PPV to predict fluid responsiveness during the increase of the vasomotor tone in a rabbit model of hemorrhage. Ten rabbits were anesthetized, paralyzed, and mechanically ventilated during basal load (BL), after progressive blood withdrawal (BW), and after volume replacement. Other two sets of data were obtained during vasomotor increase by phenylephrine (PHE) infusion in BL and BW. We estimated the change of stroke volume (∆SVEEOT) and aortic flow (∆AoFEEOT) during the EEOT. PPV and SVV were obtained by the variation of beat-to-beat PP and SV, respectively. Baseline PPV, SVV, ∆SVEEOT, and ∆AoFEEOT increased significantly after BW, with a decrease of aortic flow (P < 0.05). PHE induced a significant decrease of PPV and SVV, but without affecting ∆SVEEOT, and ∆AoFEEOT. We conclude that ∆SV and ∆AoF during EEOT kept the ability to predict fluid responsiveness during PHE infusion in a rabbit hemorrhage model. This result may suggest the advantage of EEOT with respect to SVV and PPV in predicting fluid responsiveness during vasomotor tone increase.
Collapse
|
19
|
Vos JJ, Scheeren TWL. Intraoperative hypotension and its prediction. Indian J Anaesth 2019; 63:877-885. [PMID: 31772395 PMCID: PMC6868662 DOI: 10.4103/ija.ija_624_19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative hypotension (IOH) very commonly accompanies general anaesthesia in patients undergoing major surgical procedures. The development of IOH is unwanted, since it is associated with adverse outcomes such as acute kidney injury and myocardial injury, stroke and mortality. Although the definition of IOH is variable, harm starts to occur below a mean arterial pressure (MAP) threshold of 65 mmHg. The odds of adverse outcome increase for increasing duration and/or magnitude of IOH below this threshold, and even short periods of IOH seem to be associated with adverse outcomes. Therefore, reducing the hypotensive burden by predicting and preventing IOH through proactive appropriate treatment may potentially improve patient outcome. In this review article, we summarise the current state of the prediction of IOH by the use of so-called machine-learning algorithms. Machine-learning algorithms that use high-fidelity data from the arterial pressure waveform, may be used to reveal 'traits' that are unseen by the human eye and are associated with the later development of IOH. These algorithms can use large datasets for 'training', and can subsequently be used by clinicians for haemodynamic monitoring and guiding therapy. A first clinically available application, the hypotension prediction index (HPI), is aimed to predict an impending hypotensive event, and additionally, to guide appropriate treatment by calculated secondary variables to asses preload (dynamic preload variables), contractility (dP/dtmax), and afterload (dynamic arterial elastance, Eadyn). In this narrative review, we summarise the current state of the prediction of hypotension using such novel, automated algorithms and we will highlight HPI and the secondary variables provided to identify the probable origin of the (impending) hypotensive event.
Collapse
Affiliation(s)
- Jaap J Vos
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Thomas W L Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Pandompatam G, Kashani K, Vallabhajosyula S. The role of natriuretic peptides in the management, outcomes and prognosis of sepsis and septic shock. Rev Bras Ter Intensiva 2019; 31:368-378. [PMID: 31618357 PMCID: PMC7005946 DOI: 10.5935/0103-507x.20190060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022] Open
Abstract
Sepsis continues to be a leading public health burden in the United States and worldwide. With the increasing use of advanced laboratory technology, there is a renewed interest in the use of biomarkers in sepsis to aid in more precise and targeted decision-making. Natriuretic peptides have been increasingly recognized to play a role outside of heart failure. They are commonly elevated among critically ill patients in the setting of cardiopulmonary dysfunction and may play a role in identifying patients with sepsis and septic shock. There are limited data on the role of these biomarkers in the diagnosis, management, outcomes and prognosis of septic patients. This review seeks to describe the role of natriuretic peptides in fluid resuscitation, diagnosis of ventricular dysfunction and outcomes and the prognosis of patients with sepsis. B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP) have been noted to be associated with left ventricular systolic and diastolic and right ventricular dysfunction in patients with septic cardiomyopathy. BNP/NT-proBNP may predict fluid responsiveness, and trends of these peptides may play a role in fluid resuscitation. Despite suggestions of a correlation with mortality, the role of BNP in mortality outcomes and prognosis during sepsis needs further evaluation.
Collapse
Affiliation(s)
- Govind Pandompatam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic - Rochester, Minnesota, United States
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic - Rochester, Minnesota, United States
| | - Saraschandra Vallabhajosyula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic - Rochester, Minnesota, United States.,Department of Cardiovascular Medicine, Mayo Clinic - Rochester, Minnesota, United States
| |
Collapse
|
21
|
de Courson H, Boyer P, Grobost R, Lanchon R, Sesay M, Nouette-Gaulain K, Futier E, Biais M. Changes in dynamic arterial elastance induced by volume expansion and vasopressor in the operating room: a prospective bicentre study. Ann Intensive Care 2019; 9:117. [PMID: 31602588 PMCID: PMC6787125 DOI: 10.1186/s13613-019-0588-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dynamic arterial elastance (Eadyn), defined as the ratio between pulse pressure variations and stroke volume variations, has been proposed to assess functional arterial load. We evaluated the evolution of Eadyn during volume expansion and the effects of neosynephrine infusion in hypotensive and preload-responsive patients. METHODS In this prospective bicentre study, we included 56 mechanically ventilated patients in the operating room. Each patient had volume expansion and neosynephrine infusion. Stroke volume and stroke volume variations were obtained using esophageal Doppler, and pulse pressure variations were measured through the arterial line. Pressure response to volume expansion was defined as an increase in mean arterial pressure (MAP) ≥ 10%. RESULTS Twenty-one patients were pressure responders to volume expansion. Volume expansion induced a decrease in Eadyn (from 0.69 [0.58-0.85] to 0.59 [0.42-0.77]) related to a decrease in pulse pressure variations more pronounced than the decrease in stroke volume variations. Baseline and changes in Eadyn after volume expansion were related to age, history of arterial hypertension, net arterial compliance and effective arterial elastance. Eadyn value before volume expansion > 0.65 predicted a MAP increase ≥ 10% with a sensitivity of 76% (95% CI 53-92%) and a specificity of 60% (95% CI 42-76%). Neosynephrine infusion induced a decrease in Eadyn (from 0.67 [0.48-0.80] to 0.54 [0.37-0.68]) related to a decrease in pulse pressure variations more pronounced than the decrease in stroke volume variations. Baseline and changes in Eadyn after neosynephrine infusion were only related to heart rate. CONCLUSION Eadyn is a potential sensitive marker of arterial tone changes following vasopressor infusion.
Collapse
Affiliation(s)
- Hugues de Courson
- Department of Anesthesiology and Critical Care, Pellegrin Bordeaux University Hospital, 33000, Bordeaux, France
| | - Philippe Boyer
- Department of Anesthesiology and Critical Care, Pellegrin Bordeaux University Hospital, 33000, Bordeaux, France
| | - Romain Grobost
- Department of Anesthesiology and Critical Care, Clermont-Ferrand University Hospital, 63003, Clermont-Ferrand Cedex 1, France
| | - Romain Lanchon
- Department of Anesthesiology and Critical Care, Pellegrin Bordeaux University Hospital, 33000, Bordeaux, France
| | - Musa Sesay
- Department of Anesthesiology and Critical Care, Pellegrin Bordeaux University Hospital, 33000, Bordeaux, France
| | - Karine Nouette-Gaulain
- Department of Anesthesiology and Critical Care, Pellegrin Bordeaux University Hospital, 33000, Bordeaux, France.,INSERM, U12-11, Laboratoire de Maladies Rares: Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Emmanuel Futier
- Department of Anesthesiology and Critical Care, Clermont-Ferrand University Hospital, 63003, Clermont-Ferrand Cedex 1, France.,Équipe R2D2 EA-7281/Faculté de Médecine/Université d'Auvergne, University of Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Matthieu Biais
- Department of Anesthesiology and Critical Care, Pellegrin Bordeaux University Hospital, 33000, Bordeaux, France. .,INSERM, U1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
| |
Collapse
|
22
|
Vallabhajosyula S, Kashani K, Dunlay SM, Vallabhajosyula S, Vallabhajosyula S, Sundaragiri PR, Gersh BJ, Jaffe AS, Barsness GW. Acute respiratory failure and mechanical ventilation in cardiogenic shock complicating acute myocardial infarction in the USA, 2000-2014. Ann Intensive Care 2019; 9:96. [PMID: 31463598 PMCID: PMC6713772 DOI: 10.1186/s13613-019-0571-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background There are limited epidemiological data on acute respiratory failure (ARF) in cardiogenic shock complicating acute myocardial infarction (AMI-CS). This study sought to evaluate the prevalence and outcomes of ARF in AMI-CS. Methods This was a retrospective study of AMI-CS admissions during 2000–2014 from the National Inpatient Sample. Administrative codes for ARF and mechanical ventilation (MV) were used to define the cohorts of no ARF, ARF without MV and ARF with MV. Admissions with a secondary diagnosis of AMI and with chronic MV were excluded. Outcomes of interest included in-hospital mortality, temporal trends of ARF prevalence and resource utilization. Measurements and main results During 2000–2014, 439,436 admissions for AMI-CS met the inclusion criteria. ARF and MV were noted in 57% and 43%, respectively. Admissions with non-ST-elevation AMI-CS, of non-White race and with non-private insurance received MV more frequently. Noninvasive ventilation and invasive MV increased from 0.4% and 39.2% (2000) to 3.6% and 46.4% (2014), respectively (p < 0.001). Coronary angiography and percutaneous coronary intervention were used less frequently in admissions receiving ARF with MV. Compared to admissions with no ARF, ARF without MV (adjusted odds ratio (aOR) 1.56 [95% confidence interval (CI) 1.53–1.59]; p < 0.001) and ARF with MV (aOR 2.50 [95% CI 2.47–2.54]; p < 0.001) were associated with higher in-hospital mortality. Admissions with ARF without MV had greater resource utilization and lesser discharges to home as compared to no ARF. Conclusions In this contemporary AMI-CS cohort, the presence of ARF and MV use was noted in 57% and 43%, respectively, and was associated with higher in-hospital mortality.
Collapse
Affiliation(s)
- Saraschandra Vallabhajosyula
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Kianoush Kashani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shannon M Dunlay
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Department of Health Science Research, Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Shashaank Vallabhajosyula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Pranathi R Sundaragiri
- Division of Hospital Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Allan S Jaffe
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Gregory W Barsness
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
23
|
|
24
|
de Haro C, Ochagavia A, López-Aguilar J, Fernandez-Gonzalo S, Navarra-Ventura G, Magrans R, Montanyà J, Blanch L. Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp 2019; 7:43. [PMID: 31346799 PMCID: PMC6658621 DOI: 10.1186/s40635-019-0234-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mechanical ventilation is common in critically ill patients. This life-saving treatment can cause complications and is also associated with long-term sequelae. Patient-ventilator asynchronies are frequent but underdiagnosed, and they have been associated with worse outcomes. MAIN BODY Asynchronies occur when ventilator assistance does not match the patient's demand. Ventilatory overassistance or underassistance translates to different types of asynchronies with different effects on patients. Underassistance can result in an excessive load on respiratory muscles, air hunger, or lung injury due to excessive tidal volumes. Overassistance can result in lower patient inspiratory drive and can lead to reverse triggering, which can also worsen lung injury. Identifying the type of asynchrony and its causes is crucial for effective treatment. Mechanical ventilation and asynchronies can affect hemodynamics. An increase in intrathoracic pressure during ventilation modifies ventricular preload and afterload of ventricles, thereby affecting cardiac output and hemodynamic status. Ineffective efforts can decrease intrathoracic pressure, but double cycling can increase it. Thus, asynchronies can lower the predictive accuracy of some hemodynamic parameters of fluid responsiveness. New research is also exploring the psychological effects of asynchronies. Anxiety and depression are common in survivors of critical illness long after discharge. Patients on mechanical ventilation feel anxiety, fear, agony, and insecurity, which can worsen in the presence of asynchronies. Asynchronies have been associated with worse overall prognosis, but the direct causal relation between poor patient-ventilator interaction and worse outcomes has yet to be clearly demonstrated. Critical care patients generate huge volumes of data that are vastly underexploited. New monitoring systems can analyze waveforms together with other inputs, helping us to detect, analyze, and even predict asynchronies. Big data approaches promise to help us understand asynchronies better and improve their diagnosis and management. CONCLUSIONS Although our understanding of asynchronies has increased in recent years, many questions remain to be answered. Evolving concepts in asynchronies, lung crosstalk with other organs, and the difficulties of data management make more efforts necessary in this field.
Collapse
Affiliation(s)
- Candelaria de Haro
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain. .,CIBERES, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Ochagavia
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina López-Aguilar
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Sol Fernandez-Gonzalo
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillem Navarra-Ventura
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain
| | - Rudys Magrans
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Lluís Blanch
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
25
|
Volumetric and End-Tidal Capnography for the Detection of Cardiac Output Changes in Mechanically Ventilated Patients Early after Open Heart Surgery. Crit Care Res Pract 2019; 2019:6393649. [PMID: 31281675 PMCID: PMC6589280 DOI: 10.1155/2019/6393649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022] Open
Abstract
Background Exhaled carbon dioxide (CO2) reflects cardiac output (CO) provided stable ventilation and metabolism. Detecting CO changes may help distinguish hypovolemia or cardiac dysfunction from other causes of haemodynamic instability. We investigated whether CO2 measured as end-tidal concentration (EtCO2) and eliminated volume per breath (VtCO2) reflect sudden changes in cardiac output (CO). Methods We measured changes in CO, VtCO2, and EtCO2 during right ventricular pacing and passive leg raise in 33 ventilated patients after open heart surgery. CO was measured with oesophageal Doppler. Results During right ventricular pacing, CO was reduced by 21% (CI 18–24; p < 0.001), VtCO2 by 11% (CI 7.9–13; p < 0.001), and EtCO2 by 4.9% (CI 3.6–6.1; p < 0.001). During passive leg raise, CO increased by 21% (CI 17–24; p < 0.001), VtCO2 by 10% (CI 7.8–12; p < 0.001), and EtCO2 by 4.2% (CI 3.2–5.1; p < 0.001). Changes in VtCO2 were significantly larger than changes in EtCO2 (ventricular pacing: 11% vs. 4.9% (p < 0.001); passive leg raise: 10% vs. 4.2% (p < 0.001)). Relative changes in CO correlated with changes in VtCO2 (ρ=0.53; p=0.002) and EtCO2 (ρ=0.47; p=0.006) only during reductions in CO. When dichotomising CO changes at 15%, only EtCO2 detected a CO change as judged by area under the receiver operating characteristic curve. Conclusion VtCO2 and EtCO2 reflected reductions in cardiac output, although correlations were modest. The changes in VtCO2 were larger than the changes in EtCO2, but only EtCO2 detected CO reduction as judged by receiver operating characteristic curves. The predictive ability of EtCO2 in this setting was fair. This trial is registered with NCT02070861.
Collapse
|
26
|
Vallabhajosyula S, Dunlay SM, Kashani K, Vallabhajosyula S, Vallabhajosyula S, Sundaragiri PR, Jaffe AS, Barsness GW. Temporal trends and outcomes of prolonged invasive mechanical ventilation and tracheostomy use in acute myocardial infarction with cardiogenic shock in the United States. Int J Cardiol 2019; 285:6-10. [DOI: 10.1016/j.ijcard.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
|
27
|
Pironet A, Docherty PD, Dauby PC, Chase JG, Desaive T. Practical identifiability analysis of a minimal cardiovascular system model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 171:53-65. [PMID: 28153466 DOI: 10.1016/j.cmpb.2017.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Parameters of mathematical models of the cardiovascular system can be used to monitor cardiovascular state, such as total stressed blood volume status, vessel elastance and resistance. To do so, the model parameters have to be estimated from data collected at the patient's bedside. This work considers a seven-parameter model of the cardiovascular system and investigates whether these parameters can be uniquely determined using indices derived from measurements of arterial and venous pressures, and stroke volume. METHODS An error vector defined the residuals between the simulated and reference values of the seven clinically available haemodynamic indices. The sensitivity of this error vector to each model parameter was analysed, as well as the collinearity between parameters. To assess practical identifiability of the model parameters, profile-likelihood curves were constructed for each parameter. RESULTS Four of the seven model parameters were found to be practically identifiable from the selected data. The remaining three parameters were practically non-identifiable. Among these non-identifiable parameters, one could be decreased as much as possible. The other two non-identifiable parameters were inversely correlated, which prevented their precise estimation. CONCLUSIONS This work presented the practical identifiability analysis of a seven-parameter cardiovascular system model, from limited clinical data. The analysis showed that three of the seven parameters were practically non-identifiable, thus limiting the use of the model as a monitoring tool. Slight changes in the time-varying function modeling cardiac contraction and use of larger values for the reference range of venous pressure made the model fully practically identifiable.
Collapse
Affiliation(s)
- Antoine Pironet
- GIGA-In Silico Medicine, University of Liège, B5a, Quartier Agora, Allée du 6 août, 19, 4000 Liège, Belgium.
| | - Paul D Docherty
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Pierre C Dauby
- GIGA-In Silico Medicine, University of Liège, B5a, Quartier Agora, Allée du 6 août, 19, 4000 Liège, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Thomas Desaive
- GIGA-In Silico Medicine, University of Liège, B5a, Quartier Agora, Allée du 6 août, 19, 4000 Liège, Belgium
| |
Collapse
|
28
|
Amarja H, Bhuvana K, Sriram S. Prospective Observational Study on Evaluation of Cardiac Dysfunction Induced during the Weaning Process. Indian J Crit Care Med 2019; 23:15-19. [PMID: 31065203 PMCID: PMC6481267 DOI: 10.5005/jp-journals-10071-23106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Context Weaning induced cardiac dysfunction can occur without underlying heart disease. Changes in intrathoracic pressure, systemic vascular resistance, preload and afterload leading to heart-lung interactions are the possible explanatory mechanisms Aims The aim of the current study was whether the assessment and identification of cardiac dysfunction induced during the weaning process could predict the outcome of extubation. Settings and design A prospective observational study with convenience sampling method was conducted from May 2015 to April 2016 after institutional ethical committee approval (ref 161/2015). Materials and methods Patients over eighteen and planned for extubation were included. Weaning method used was a spontaneous breathing trial (SBT) by pressure support-positive end-expiratory pressure (PS-PEEP). Baseline characteristics, weaning, and echocardiography parameters were collected pre extubation. Post-extubation echocardiographic parameters were collected within six hours as per the protocol. The primary outcome was extubation failure (reintubation within 48 hours). Secondary outcomes were ICU length of stay and ICU mortality. Statistical analysis Statistical method used is STATA™ (Version14, College Station TX). Results Out of one hundred and sixty-one patients, twenty-one failed extubation (13.04 %). Pre-extubation echocardiographic parameters were similar in two groups except for preexisting LV systolic dysfunction. Post-extubation E/e` (9.30 vs. 7.71 p = 0.018) was higher in the extubation failure group. Extubation failure group had higher intensive care unit (ICU) length of stay and ICU mortality. Conclusion In our study E/e` during a weaning trial did not predict extubation success. Cardiac dysfunction induced during weaning may get masked during weaning and manifests postextubation. This needs to be verified in subsequent studies. Key messages Cardiac dysfunction induced during the weaning process may get masked and manifests post-extubation. Echocardiographic assessment during the weaning process and post-extubation helps to evaluate and identify the patients at risk of reintubation. How to cite this article Amarja H, Bhuvana K, Sriram S. Prospective Observational Study on Evaluation of Cardiac Dysfunction Induced during the Weaning Process. Indian Journal of Critical Care Medicine, January 2019;23(1):15-19.
Collapse
Affiliation(s)
- Havaldar Amarja
- Department of Critical Care Medicine, St. John's Hospital, Bengaluru, Karnataka, India
| | - Krishna Bhuvana
- Department of Critical Care Medicine, St. John's Hospital, Bengaluru, Karnataka, India
| | - Sampath Sriram
- Department of Critical Care Medicine, St. John's Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
29
|
Monge Garcia MI, Jian Z, Settels JJ, Hunley C, Cecconi M, Hatib F, Pinsky MR. Performance comparison of ventricular and arterial dP/dt max for assessing left ventricular systolic function during different experimental loading and contractile conditions. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:325. [PMID: 30486866 PMCID: PMC6262953 DOI: 10.1186/s13054-018-2260-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/12/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Maximal left ventricular (LV) pressure rise (LV dP/dtmax), a classical marker of LV systolic function, requires LV catheterization, thus surrogate arterial pressure waveform measures have been proposed. We compared LV and arterial (femoral and radial) dP/dtmax to the slope of the LV end-systolic pressure-volume relationship (Ees), a load-independent measure of LV contractility, to determine the interactions between dP/dtmax and Ees as loading and LV contractility varied. METHODS We measured LV pressure-volume data using a conductance catheter and femoral and radial arterial pressures using a fluid-filled catheter in 10 anesthetized pigs. Ees was calculated as the slope of the end-systolic pressure-volume relationship during a transient inferior vena cava occlusion. Afterload was assessed by the effective arterial elastance. The experimental protocol consisted of sequentially changing afterload (phenylephrine/nitroprusside), preload (bleeding/fluid bolus), and contractility (esmolol/dobutamine). A linear-mixed analysis was used to assess the contribution of cardiac (Ees, end-diastolic volume, effective arterial elastance, heart rate, preload-dependency) and arterial factors (total vascular resistance and arterial compliance) to LV and arterial dP/dtmax. RESULTS Both LV and arterial dP/dtmax allowed the tracking of Ees changes, especially during afterload and contractility changes, although arterial dP/dtmax was lower compared to LV dP/dtmax (bias 732 ± 539 mmHg⋅s- 1 for femoral dP/dtmax, and 625 ± 501 mmHg⋅s- 1 for radial dP/dtmax). Changes in cardiac contractility (Ees) were the main determinant of LV and arterial dP/dtmax changes. CONCLUSION Although arterial dP/dtmax is a complex function of central and peripheral arterial factors, radial and particularly femoral dP/dtmax allowed reasonably good tracking of LV contractility changes as loading and inotropic conditions varied.
Collapse
Affiliation(s)
- Manuel Ignacio Monge Garcia
- Unidad de Cuidados Intensivos, Hospital Universitario SAS de Jerez, C/ Circunvalación, s/n, 11407, Jerez de la Frontera, Spain.
| | | | | | - Charles Hunley
- Orlando Regional Medical Center, Orlando Health, Florida, USA
| | - Maurizio Cecconi
- Department Anaesthesia and Intensive Care Units, Humanitas Research Hospital, Humanitas University, Milan, Italy
| | - Feras Hatib
- Edwards Lifesciences, Irvine, California, USA
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
30
|
Trepte CJC, Phillips C, Solà J, Adler A, Saugel B, Haas S, Bohm SH, Reuter DA. Electrical impedance tomography for non-invasive assessment of stroke volume variation in health and experimental lung injury. Br J Anaesth 2018; 118:68-76. [PMID: 28039243 DOI: 10.1093/bja/aew341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Functional imaging by thoracic electrical impedance tomography (EIT) is a non-invasive approach to continuously assess central stroke volume variation (SVV) for guiding fluid therapy. The early available data were from healthy lungs without injury-related changes in thoracic impedance as a potentially influencing factor. The aim of this study was to evaluate SVV measured by EIT (SVVEIT) against SVV from pulse contour analysis (SVVPC) in an experimental animal model of acute lung injury at different lung volumes. METHODS We conducted a randomized controlled trial in 30 anaesthetized domestic pigs. SVVEIT was calculated automatically analysing heart-lung interactions in a set of pixels representing the aorta. Each initial analysis was performed automatically and unsupervised using predefined frequency domain algorithms that had not previously been used in the study population. After baseline measurements in normal lung conditions, lung injury was induced either by repeated broncho-alveolar lavage (n=15) or by intravenous administration of oleic acid (n=15) and SVVEIT was remeasured. RESULTS The protocol was completed in 28 animals. A total of 123 pairs of SVV measurements were acquired. Correlation coefficients (r) between SVVEIT and SVVPC were 0.77 in healthy lungs, 0.84 after broncho-alveolar lavage, and 0.48 after lung injury from oleic acid. CONCLUSIONS EIT provides automated calculation of a dynamic preload index of fluid responsiveness (SVVEIT) that is non-invasively derived from a central haemodynamic signal. However, alterations in thoracic impedance induced by lung injury influence this method.
Collapse
Affiliation(s)
- C J C Trepte
- Department of Anaesthesiology, Centre for Anaesthesiology and Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany
| | - C Phillips
- Department of Pulmonary and Critical Care, Oregon Health and Science University, Portland, OR, USA
| | - J Solà
- Centre Suisse d'Electronique et de Microtechnique, Neuchatel, Switzerland
| | - A Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - B Saugel
- Department of Anaesthesiology, Centre for Anaesthesiology and Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany
| | - S Haas
- Department of Anaesthesiology, Centre for Anaesthesiology and Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany
| | - S H Bohm
- Swisstom AG, Landquart, Switzerland
| | - D A Reuter
- Department of Anaesthesiology, Centre for Anaesthesiology and Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany
| |
Collapse
|
31
|
Russotto V, Bellani G, Foti G. Respiratory mechanics in patients with acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:382. [PMID: 30460256 DOI: 10.21037/atm.2018.08.32] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the recognition of its iatrogenic potential, mechanical ventilation remains the mainstay of respiratory support for patients with acute respiratory distress syndrome (ARDS). The low volume ventilation has been recognized as the only method to reduce mortality of ARDS patients and plateau pressure as the lighthouse for delivering safe ventilation. Recent investigations suggest that a ventilation based on lung mechanics (tidal ventilation tailored to the available lung volume able to receive it, i.e., driving pressure) is a successful approach to improve outcome. However, currently available bedside mechanical variables do not consider regional mechanical properties of ARDS affected lungs, which include the role of local stress risers at the boundaries of areas with different aeration. A unifying approach considers lung-related causes and ventilation-related causes of lung injury. These last may be incorporated in the mechanical power (i.e., amount of mechanical energy transferred per unit of time). Ventilation-induced lung injury (which includes the self-inflicted lung injury of a spontaneously breathing patient) can therefore be prevented by the adoption of measures promoting an increase of ventilable lung and its homogeneity and by delivering lower levels of mechanical power. Prone position promotes lung homogeneity without increasing the delivered mechanical power. This review describes the recent developments on respiratory mechanics in ARDS patients, providing both bedside and research insights from the most updated evidence.
Collapse
Affiliation(s)
- Vincenzo Russotto
- Department of Emergency and Intensive Care, University Hospital San Gerardo, Monza, Italy
| | - Giacomo Bellani
- Department of Emergency and Intensive Care, University Hospital San Gerardo, Monza, Italy.,University of Milano Bicocca, Milano, Italy
| | - Giuseppe Foti
- Department of Emergency and Intensive Care, University Hospital San Gerardo, Monza, Italy.,University of Milano Bicocca, Milano, Italy
| |
Collapse
|
32
|
Pickett JD, Bridges E, Kritek PA, Whitney JD. Passive Leg-Raising and Prediction of Fluid Responsiveness: Systematic Review. Crit Care Nurse 2017; 37:32-47. [PMID: 28365648 DOI: 10.4037/ccn2017205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Fluid boluses are often administered with the aim of improving tissue hypoperfusion in shock. However, only approximately 50% of patients respond to fluid administration with a clinically significant increase in stroke volume. Fluid overload can exacerbate pulmonary edema, precipitate respiratory failure, and prolong mechanical ventilation. Therefore, it is important to predict which hemodynamically unstable patients will increase their stroke volume in response to fluid administration, thereby avoiding deleterious effects. Passive leg-raising (lowering the head and upper torso from a 45° angle to lying supine [flat] while simultaneously raising the legs to a 45° angle) is a transient, reversible autotransfusion that simulates a fluid bolus and is performed to predict a response to fluid administration. The article reviews the accuracy, physiological effects, and factors affecting the response to passive-leg raising to predict fluid responsiveness in critically ill patients.
Collapse
Affiliation(s)
- Joya D Pickett
- Joya D. Pickett completed her doctoral degree at the University of Washington, School of Nursing, and practices as a critical care clinical nurse specialist at Swedish Medical Center in Seattle, Washington. .,Elizabeth Bridges is an associate professor at the University of Washington School of Nursing and the clinical nurse researcher at the University of Washington Medical Center, Seattle, Washington. .,Patricia (Trish) A. Kritek is the medical director of Critical Care at the University of Washington Medical Center. .,JoAnne D. Whitney is a professor of nursing at the University of Washington, School of Nursing, and a nurse scientist at Harborview Medical Center, Seattle, Washington.
| | - Elizabeth Bridges
- Joya D. Pickett completed her doctoral degree at the University of Washington, School of Nursing, and practices as a critical care clinical nurse specialist at Swedish Medical Center in Seattle, Washington.,Elizabeth Bridges is an associate professor at the University of Washington School of Nursing and the clinical nurse researcher at the University of Washington Medical Center, Seattle, Washington.,Patricia (Trish) A. Kritek is the medical director of Critical Care at the University of Washington Medical Center.,JoAnne D. Whitney is a professor of nursing at the University of Washington, School of Nursing, and a nurse scientist at Harborview Medical Center, Seattle, Washington
| | - Patricia A Kritek
- Joya D. Pickett completed her doctoral degree at the University of Washington, School of Nursing, and practices as a critical care clinical nurse specialist at Swedish Medical Center in Seattle, Washington.,Elizabeth Bridges is an associate professor at the University of Washington School of Nursing and the clinical nurse researcher at the University of Washington Medical Center, Seattle, Washington.,Patricia (Trish) A. Kritek is the medical director of Critical Care at the University of Washington Medical Center.,JoAnne D. Whitney is a professor of nursing at the University of Washington, School of Nursing, and a nurse scientist at Harborview Medical Center, Seattle, Washington
| | - JoAnne D Whitney
- Joya D. Pickett completed her doctoral degree at the University of Washington, School of Nursing, and practices as a critical care clinical nurse specialist at Swedish Medical Center in Seattle, Washington.,Elizabeth Bridges is an associate professor at the University of Washington School of Nursing and the clinical nurse researcher at the University of Washington Medical Center, Seattle, Washington.,Patricia (Trish) A. Kritek is the medical director of Critical Care at the University of Washington Medical Center.,JoAnne D. Whitney is a professor of nursing at the University of Washington, School of Nursing, and a nurse scientist at Harborview Medical Center, Seattle, Washington
| |
Collapse
|
33
|
Monge García M, Guijo González P, Gracia Romero M, Gil Cano A, Rhodes A, Grounds R, Cecconi M. Effects of arterial load variations on dynamic arterial elastance: an experimental study. Br J Anaesth 2017; 118:938-946. [DOI: 10.1093/bja/aex070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 01/06/2023] Open
|
34
|
Lakhal K, Nay M, Kamel T, Lortat-Jacob B, Ehrmann S, Rozec B, Boulain T. Change in end-tidal carbon dioxide outperforms other surrogates for change in cardiac output during fluid challenge. Br J Anaesth 2017; 118:355-362. [DOI: 10.1093/bja/aew478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 01/20/2023] Open
|
35
|
Diagnosis Accuracy of Mean Arterial Pressure Variation during a Lung Recruitment Maneuver to Predict Fluid Responsiveness in Thoracic Surgery with One-Lung Ventilation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3623710. [PMID: 27819002 PMCID: PMC5081435 DOI: 10.1155/2016/3623710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/22/2016] [Indexed: 12/02/2022]
Abstract
Background. Lung recruitment maneuver (LRM) during thoracic surgery can reduce systemic venous return and resulting drop in systemic blood pressure depends on the patient's fluid status. We hypothesized that changes in systemic blood pressure during the transition in LRM from one-lung ventilation (OLV) to two-lung ventilation (TLV) may provide an index to predict fluid responsiveness. Methods. Hemodynamic parameters were measured before LRM (T0); after LRM at the time of the lowest mean arterial blood pressure (MAP) (T1) and at 3 minutes (T2); before fluid administration (T3); and 5 minutes after ending it (T4). If the stroke volume index increased by >25% following 10 mL/kg colloid administration for 30 minutes, then the patients were assigned to responder group. Results. Changes in MAP, central venous pressure (CVP), and stroke volume variation (SVV) between T0 and T1 were significantly larger in responders. Areas under the curve for change in MAP, CVP, and SVV were 0.852, 0.759, and 0.820, respectively; the optimal threshold values for distinguishment of responders were 9.5 mmHg, 0.5 mmHg, and 3.5%, respectively. Conclusions. The change in the MAP associated with LRM at the OLV to TLV conversion appears to be a useful indicator of fluid responsiveness after thoracic surgery. Trial Registration. This trial is registered at Clinical Research Information Service with KCT0000774.
Collapse
|
36
|
Broch O, Renner J, Meybohm P, Albrecht M, Höcker J, Haneya A, Steinfath M, Bein B, Gruenewald M. Dynamic Variables Fail to Predict Fluid Responsiveness in an Animal Model With Pericardial Effusion. J Cardiothorac Vasc Anesth 2016; 30:1205-11. [PMID: 27499343 DOI: 10.1053/j.jvca.2016.03.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The reliability of dynamic and volumetric variables of fluid responsiveness in the presence of pericardial effusion is still elusive. The aim of the present study was to investigate their predictive power in a porcine model with hemodynamic relevant pericardial effusion. DESIGN A single-center animal investigation. PARTICIPANTS Twelve German domestic pigs. INTERVENTIONS Pigs were studied before and during pericardial effusion. Instrumentation included a pulmonary artery catheter and a transpulmonary thermodilution catheter in the femoral artery. Hemodynamic variables like cardiac output (COPAC) and stroke volume (SVPAC) derived from pulmonary artery catheter, global end-diastolic volume (GEDV), stroke volume variation (SVV), and pulse-pressure variation (PPV) were obtained. MEASUREMENTS AND MAIN RESULTS At baseline, SVV, PPV, GEDV, COPAC, and SVPAC reliably predicted fluid responsiveness (area under the curve 0.81 [p = 0.02], 0.82 [p = 0.02], 0.74 [p = 0.07], 0.74 [p = 0.07], 0.82 [p = 0.02]). After establishment of pericardial effusion the predictive power of dynamic variables was impaired and only COPAC and SVPAC and GEDV allowed significant prediction of fluid responsiveness (area under the curve 0.77 [p = 0.04], 0.76 [p = 0.05], 0.83 [p = 0.01]) with clinically relevant changes in threshold values. CONCLUSIONS In this porcine model, hemodynamic relevant pericardial effusion abolished the ability of dynamic variables to predict fluid responsiveness. COPAC, SVPAC, and GEDV enabled prediction, but their threshold values were significantly changed.
Collapse
Affiliation(s)
- Ole Broch
- Departments of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | - Jochen Renner
- Departments of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Patrick Meybohm
- Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital, Frankfurt, Germany
| | - Martin Albrecht
- Experimental Anesthesiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Höcker
- Departments of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Assad Haneya
- Cardiothoracic and Vascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Markus Steinfath
- Departments of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Berthold Bein
- Anesthesiology and Intensive Care Medicine, Asklepios Hospital St. Georg, Hamburg, Germany
| | - Matthias Gruenewald
- Departments of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
37
|
Wyffels PAH, Van Heuverswyn F, De Hert S, Wouters PF. Dynamic filling parameters in patients with atrial fibrillation: differentiating rhythm induced from ventilation-induced variations in pulse pressure. Am J Physiol Heart Circ Physiol 2016; 310:H1194-200. [DOI: 10.1152/ajpheart.00712.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/13/2016] [Indexed: 11/22/2022]
Abstract
In patients with sinus rhythm, the magnitude of mechanical ventilation (MV)-induced changes in pulse pressure (PP) is known to predict the effect of fluid loading on cardiac output. This approach, however, is not applicable in patients with atrial fibrillation (AF). We propose a method to isolate this effect of MV from the rhythm-induced chaotic changes in PP in patients with AF. In 10 patients undergoing pulmonary vein ablation for treatment of AF under general anesthesia, ECG and PP waveforms were analyzed during apnea (T1) and during MV at tidal volumes of 8 ml/kg (T2) and 12 ml/kg (T3), respectively. In a first step, three mathematical models were compared in their ability to predict individual PP at T1. The best-fitting model was then selected as the reference to quantify the effects of MV on PP in these patients. A local polynomial regression model based on two preceding RR intervals (LOC2) was found to be superior over the quadratic models to predict PP. LOC2 was therefore selected to quantify variations in PP induced by MV. During T2 and T3, magnitude of PP deviations was related with the amplitude of tidal volume [mean bias error (SD) of −5 (6) and −8 (7) mmHg for T2 and T3, respectively; P = 0.003 repeated-measures ANOVA]. We conclude that LOC2 most accurately predicted rhythm-induced variations in PP. MV-induced deviations in PP can be quantified and may therefore provide a method to study cardiopulmonary interactions in the presence of arrhythmia.
Collapse
Affiliation(s)
- Piet A. H. Wyffels
- Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium; and
| | | | - Stefan De Hert
- Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium; and
| | - Patrick F. Wouters
- Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium; and
| |
Collapse
|
38
|
Perioperative fluid guidance with transthoracic echocardiography and pulse-contour device in morbidly obese patients. Obes Surg 2015; 24:2117-25. [PMID: 24902655 DOI: 10.1007/s11695-014-1329-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND In bariatric surgery, non- or mini-invasive modalities for cardiovascular monitoring are addressed to meet individual variability in hydration needs. The aim of the study was to compare conventional monitoring to an individualized goal-directed therapy (IGDT) regarding the need of perioperative fluids and cardiovascular stability. METHODS Fifty morbidly obese patients were consecutively scheduled for laparoscopic bariatric surgery (ClinicalTrials.gov Identifier: NCT01873183). The intervention group (IG, n=30) was investigated preoperatively with transthoracic echocardiography (TTE) and rehydrated with colloid fluids if a low level of venous return was detected. During surgery, IGDT was continued with a pulse-contour device (FloTrac™). In the control group (CG, n=20), conventional monitoring was conducted. The type and amount of perioperative fluids infused, vasoactive/inotropic drugs administered, and blood pressure levels were registered. RESULTS In the IG, 213 ± 204 mL colloid fluids were administered as preoperative rehydration vs. no preoperative fluids in the CG (p<0.001). During surgery, there was no difference in the fluids administered between the groups. Mean arterial blood pressures were higher in the IG vs. the CG both after induction of anesthesia and during surgery (p=0.001 and p=0.001). CONCLUSIONS In morbidly obese patients suspected of being hypovolemic, increased cardiovascular stability may be reached by preoperative rehydration. The management of rehydration should be individualized. Additional invasive monitoring does not appear to have any effect on outcomes in obesity surgery.
Collapse
|
39
|
Ventilation and gas exchange management after cardiac arrest. Best Pract Res Clin Anaesthesiol 2015; 29:413-24. [PMID: 26670813 DOI: 10.1016/j.bpa.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/23/2022]
Abstract
For several decades, physicians had integrated several interventions aiming to improve the outcomes in post-cardiac arrest patients. However, the mortality rate after cardiac arrest is still as high as 50%. Post-cardiac arrest syndrome is associated with high morbidity and mortality due to not only poor neurological outcome and cardiovascular failure but also respiratory dysfunction. To minimize ventilator-associated lung injury, protective mechanical ventilation by using low tidal volume ventilation and driving pressure may decrease pulmonary complications and improve survival. Low level of positive end-expiratory pressure (PEEP) can be initiated and titrated with careful cardiac output and respiratory mechanics monitoring. Furthermore, optimizing gas exchange by avoiding hypoxia and hyperoxia as well as maintaining normocarbia may improve neurological and survival outcome. Early multidisciplinary cardiac rehabilitation intervention is recommended. Minimally invasive monitoring techniques, that is, echocardiography, transpulmonary thermodilution method measuring extravascular lung water, as well as transcranial Doppler ultrasound, might be useful to improve appropriate management of post-cardiac arrest patients.
Collapse
|
40
|
Vos JJ, Poterman M, Salm PP, Van Amsterdam K, Struys MMRF, Scheeren TWL, Kalmar AF. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds: a prospective observational study. Can J Anaesth 2015; 62:1153-60. [PMID: 26335905 PMCID: PMC4595532 DOI: 10.1007/s12630-015-0464-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/16/2015] [Indexed: 11/30/2022] Open
Abstract
Background Pulse pressure variation (PPV) and stroke volume variation (SVV) are dynamic preload variables that can be measured noninvasively to assess fluid responsiveness (FR) in anesthetized patients with mechanical ventilation. Few studies have examined the effectiveness of predicting FR according to the definition of FR, and assessment of inconclusive values of PPV and SVV around the cut-off value (the “grey zone”) might improve individual FR prediction. We explored the ability of noninvasive volume clamp derived measurements of PPV and SVV to predict FR using the grey zone approach, and we assessed the influence of multiple thresholds on the predictive ability of the numerical definition of FR. Methods Ninety patients undergoing general surgery were included in this prospective observational study and received a 500 mL fluid bolus as deemed clinically required by the attending anesthesiologist. A minimal relative increase in stroke volume index (↑SVI) was used to define FR with different thresholds from 10-25%. The PPV, SVV, and SVI were measured using the Nexfin® device that employs noninvasive volume clamp plethysmography. Results The area under the receiver operator characteristic curve gradually increased for PPV / SVV with higher threshold values (from 0.818 / 0.760 at 10% ↑SVI to 0.928 / 0.944 at 25% ↑SVI). The grey zone limits of both PPV and SVV changed from 9–16% (PPV) and 5–13% (SVV) at the 10% ↑SVI threshold to 18–21% (PPV) and 14–16% (SVV) at the 25% ↑SVI threshold. Conclusion Noninvasive PPV and SVV measurements allow an acceptable FR prediction, although the reliability of both variables is dependent on the intended increase in SVI, which improves substantially with concomitant smaller grey zones at higher ↑SVI thresholds. Electronic supplementary material The online version of this article (doi:10.1007/s12630-015-0464-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaap Jan Vos
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands.
| | - Marieke Poterman
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands
| | - Pieternel Papineau Salm
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands
| | - Kai Van Amsterdam
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands
| | - Michel M R F Struys
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands
| | - Thomas W L Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands
| | - Alain F Kalmar
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO BOX 30 001, 9700 RB, Groningen, The Netherlands.,Department of Anesthesiology and Intensive Care Medicine, Maria Middelares Hospital, Ghent, Belgium
| |
Collapse
|
41
|
Fu Q, Duan M, Zhao F, Mi W. Evaluation of stroke volume variation and pulse pressure variation as predictors of fluid responsiveness in patients undergoing protective one-lung ventilation. Drug Discov Ther 2015; 9:296-302. [PMID: 26370528 DOI: 10.5582/ddt.2015.01046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to investigate whether the hemodynamic indices, including stroke volume variation (SVV) and pulse pressure variation (PPV) could predict fluid responsiveness in patients undergoing protective one-lung ventilation. 60 patients scheduled for a combined thoracoscopic and laparoscopic esophagectomy were enrolled and randomized into two groups. The patients in the protective group (Group P) were ventilated with a tidal volume of 6 mL/kg, an inspired oxygen fraction (FiO2) of 80%, and a positive end expiratory pressure (PEEP) of 5 cm H2O. Patients in the conventional group (Group C) were ventilated with a tidal volume of 8 mL/kg and a FiO2 of 100%. Dynamic variables were collected before and after fluid loading (7 mL/kg hydroxyethyl starch 6%, 0.4 mL/kg/min). Patients whose stroke volume index (SVI) increased by more than 15% were defined as responders. Data collected from 45 patients were finally analyzed. Twelve of 24 patients in Group P and 10 of 21 patients in Group C were responders. SVV and PPV significantly changed after the fluid loading. The receive operating characteristic (ROC) analysis showed that the thresholds for SVV and PPV to discriminate responders were 8.5% for each, with a sensitivity of 66.7% (SVV) and 75% (PPV) and a specificity of 50% (SVV) and 83.3% (PPV) in Group P. However, the thresholds for SVV and PPV were 8.5% and 7.5% with a sensitivity of 80% (SVV) and 90% (PPV) and a specificity of 70% (SVV) and 80% (PPV) in Group C. We found SVV and PPV could predict fluid responsiveness in protective one-lung ventilation, but the accuracy and ability of SVV and PPV were weak compared with the role they played in a conventional ventilation strategy.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Anesthesiology, General Hospital of People's Liberation Army
| | | | | | | |
Collapse
|
42
|
Haas SA, Saugel B, Trepte CJ, Reuter DA. [Goal-directed hemodynamic therapy: Concepts, indications and risks]. Anaesthesist 2015; 64:494-505. [PMID: 26081011 DOI: 10.1007/s00101-015-0035-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Goal-directed hemodynamic therapy is becoming increasingly more interesting for anesthesiologists and intensive care physicians. Meta-analyses of studies evaluating perioperative therapy algorithms demonstrated a reduction of postoperative morbidity compared to the previous clinical practices. In this review article the basic concepts of goal-directed hemodynamic therapy and the principles of previously employed therapy algorithms are described and discussed. Furthermore, the questions of how these therapy strategies can be transferred into daily clinical practice and whether these therapeutic approaches might even bear risks for patients are elucidated.
Collapse
Affiliation(s)
- S A Haas
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Anästhesiologie und Intensivmedizin, Martinistr. 52, 20246, Hamburg, Deutschland,
| | | | | | | |
Collapse
|
43
|
Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper Med (Lond) 2015; 4:3. [PMID: 25897397 PMCID: PMC4403901 DOI: 10.1186/s13741-015-0014-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Perioperative fluid therapy remains a highly debated topic. Its purpose is to maintain or restore effective circulating blood volume during the immediate perioperative period. Maintaining effective circulating blood volume and pressure are key components of assuring adequate organ perfusion while avoiding the risks associated with either organ hypo- or hyperperfusion. Relative to perioperative fluid therapy, three inescapable conclusions exist: overhydration is bad, underhydration is bad, and what we assume about the fluid status of our patients may be incorrect. There is wide variability of practice, both between individuals and institutions. The aims of this paper are to clearly define the risks and benefits of fluid choices within the perioperative space, to describe current evidence-based methodologies for their administration, and ultimately to reduce the variability with which perioperative fluids are administered. METHODS Based on the abovementioned acknowledgements, a group of 72 researchers, well known within the field of fluid resuscitation, were invited, via email, to attend a meeting that was held in Chicago in 2011 to discuss perioperative fluid therapy. From the 72 invitees, 14 researchers representing 7 countries attended, and thus, the international Fluid Optimization Group (FOG) came into existence. These researches, working collaboratively, have reviewed the data from 162 different fluid resuscitation papers including both operative and intensive care unit populations. This manuscript is the result of 3 years of evidence-based, discussions, analysis, and synthesis of the currently known risks and benefits of individual fluids and the best methods for administering them. RESULTS The results of this review paper provide an overview of the components of an effective perioperative fluid administration plan and address both the physiologic principles and outcomes of fluid administration. CONCLUSIONS We recommend that both perioperative fluid choice and therapy be individualized. Patients should receive fluid therapy guided by predefined physiologic targets. Specifically, fluids should be administered when patients require augmentation of their perfusion and are also volume responsive. This paper provides a general approach to fluid therapy and practical recommendations.
Collapse
|
44
|
Guinot PG, Bernard E, Levrard M, Dupont H, Lorne E. Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:14. [PMID: 25598221 PMCID: PMC4335631 DOI: 10.1186/s13054-014-0732-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/23/2014] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Gradual reduction of the dosage of norepinephrine (NE) in patients with septic shock is usually left to the physician's discretion. No hemodynamic indicator predictive of the possibility of decreasing the NE dosage is currently available at the bedside. The respiratory pulse pressure variation/respiratory stroke volume variation (dynamic arterial elastance (Eadyn)) ratio has been proposed as an indicator of vascular tone. The purpose of this study was to determine whether Eadyn can be used to predict the decrease in arterial pressure when decreasing the NE dosage in resuscitated sepsis patients. METHODS A prospective study was carried out in a university hospital intensive care unit. All consecutive patients with septic shock monitored by PICCO2 for whom the intensive care physician planned to decrease the NE dosage were enrolled. Measurements of hemodynamic and PICCO2 variables were obtained before/after decreasing the NE dosage. Responders were defined by a >15% decrease in mean arterial pressure (MAP). RESULTS In total, 35 patients were included. MAP decreased by >15% after decreasing the NE dosage in 37% of patients (n = 13). Clinical characteristics appeared to be similar between responders and nonresponders. Eadyn was lower in responders than in nonresponders (0.75 (0.69 to 0.85) versus 1 (0. 83 to 1.22), P <0.05). Baseline Eadyn was correlated with NE-induced MAP variations (r = 0.47, P = 0.005). An Eadyn less than 0.94 predicted a decrease in arterial pressure, with an area under the receiver-operating characteristic curve of 0.87 (95% confidence interval (95% CI): 0.72 to 0.96; P <0.0001), 100% sensitivity, and 68% specificity. CONCLUSIONS In sepsis patients treated with NE, Eadyn may predict the decrease in arterial pressure in response to NE dose reduction. Eadyn may constitute an easy-to-use functional approach to arterial-tone assessment, which may be helpful to identify patients likely to benefit from NE dose reduction.
Collapse
Affiliation(s)
- Pierre-Grégoire Guinot
- Department of Anaesthesiology and Critical Care, Amiens University Hospital, Place Victor Pauchet, Amiens, 80054, France.
| | - Eugénie Bernard
- Department of Anaesthesiology and Critical Care, Amiens University Hospital, Place Victor Pauchet, Amiens, 80054, France.
| | - Mélanie Levrard
- Department of Anaesthesiology and Critical Care, Amiens University Hospital, Place Victor Pauchet, Amiens, 80054, France.
| | - Hervé Dupont
- Department of Anaesthesiology and Critical Care, Amiens University Hospital, Place Victor Pauchet, Amiens, 80054, France. .,INSERM U1088, Jules Verne University of Picardy, Amiens, France.
| | - Emmanuel Lorne
- Department of Anaesthesiology and Critical Care, Amiens University Hospital, Place Victor Pauchet, Amiens, 80054, France. .,INSERM U1088, Jules Verne University of Picardy, Amiens, France.
| |
Collapse
|
45
|
Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, Rhodes A. The Use of Pulse Pressure Variation and Stroke Volume Variation in Spontaneously Breathing Patients to Assess Dynamic Arterial Elastance and to Predict Arterial Pressure Response to Fluid Administration. Anesth Analg 2015; 120:76-84. [DOI: 10.1213/ane.0000000000000442] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Abstract
Functional hemodynamic monitoring is the assessment of the dynamic interactions of hemodynamic variables in response to a defined perturbation. Recent interest in functional hemodynamic monitoring for the bedside assessment of cardiovascular insufficiency has heightened with the documentation of its accuracy in predicting volume responsiveness using a wide variety of monitoring devices, both invasive and noninvasive, and across multiple patient groups and clinical conditions. However, volume responsiveness, though important, reflects only part of the overall spectrum of functional physiologic variables that can be measured to define the physiologic state and monitor response to therapy.
Collapse
Affiliation(s)
- Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, 606 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Wrobel JP, Thompson BR, Stuart-Andrews CR, Kee K, Snell GI, Buckland M, Williams TJ. Intermittent positive pressure ventilation increases diastolic pulmonary arterial pressure in advanced COPD. Heart Lung 2014; 44:50-6. [PMID: 25453391 DOI: 10.1016/j.hrtlng.2014.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To measure the impact of intermittent positive pressure ventilation (IPPV) on diastolic pulmonary arterial pressure (dPAP) and pulmonary pulse pressure in patients with advanced COPD. BACKGROUND The physiological effects of raised intrathoracic pressures upon the pulmonary circulation have not been fully established. METHODS 22 subjects with severe COPD receiving IPPV were prospectively assessed with pulmonary and radial arterial catheterization. Changes in dPAP were assessed from end-expiration to early inspiration during low and high tidal volume ventilation. RESULTS Inspiration during low tidal volume IPPV increased the median [IQR] dPAP by 3.9 [2.5-4.8] mm Hg (P < 0.001). During high tidal volume, similar changes were observed. The IPPV-associated change in dPAP was correlated with baseline measures of PaO2 (rho = 0.65, P = 0.005), pH (rho = 0.64, P = 0.006) and right atrial pressure (rho = -0.53, P = 0.011). CONCLUSIONS In severe COPD, IPPV increases dPAP and reduces pulmonary pulse pressure during inspiration.
Collapse
Affiliation(s)
- Jeremy P Wrobel
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia; Advanced Lung Disease Unit, Royal Perth Hospital, Perth, Australia.
| | - Bruce R Thompson
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| | | | - Kirk Kee
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| | - Gregory I Snell
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| | - Mark Buckland
- Department of Anaesthesia, The Alfred, Melbourne, Australia
| | - Trevor J Williams
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| |
Collapse
|
48
|
García MIM, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, Cecconi M. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:626. [PMID: 25407570 PMCID: PMC4271484 DOI: 10.1186/s13054-014-0626-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Introduction Functional assessment of arterial load by dynamic arterial elastance (Eadyn), defined as the ratio between pulse pressure variation (PPV) and stroke volume variation (SVV), has recently been shown to predict the arterial pressure response to volume expansion (VE) in hypotensive, preload-dependent patients. However, because both SVV and PPV were obtained from pulse pressure analysis, a mathematical coupling factor could not be excluded. We therefore designed this study to confirm whether Eadyn, obtained from two independent signals, allows the prediction of arterial pressure response to VE in fluid-responsive patients. Methods We analyzed the response of arterial pressure to an intravenous infusion of 500 ml of normal saline in 53 mechanically ventilated patients with acute circulatory failure and preserved preload dependence. Eadyn was calculated as the simultaneous ratio between PPV (obtained from an arterial line) and SVV (obtained by esophageal Doppler imaging). A total of 80 fluid challenges were performed (median, 1.5 per patient; interquartile range, 1 to 2). Patients were classified according to the increase in mean arterial pressure (MAP) after fluid administration in pressure responders (≥10%) and non-responders. Results Thirty-three fluid challenges (41.2%) significantly increased MAP. At baseline, Eadyn was higher in pressure responders (1.04 ± 0.28 versus 0.60 ± 0.14; P <0.0001). Preinfusion Eadyn was related to changes in MAP after fluid administration (R2 = 0.60; P <0.0001). At baseline, Eadyn predicted the arterial pressure increase to volume expansion (area under the receiver operating characteristic curve, 0.94; 95% confidence interval (CI): 0.86 to 0.98; P <0.0001). A preinfusion Eadyn value ≥0.73 (gray zone: 0.72 to 0.88) discriminated pressure responder patients with a sensitivity of 90.9% (95% CI: 75.6 to 98.1%) and a specificity of 91.5% (95% CI: 79.6 to 97.6%). Conclusions Functional assessment of arterial load by Eadyn, obtained from two independent signals, enabled the prediction of arterial pressure response to fluid administration in mechanically ventilated, preload-dependent patients with acute circulatory failure. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0626-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Ignacio Monge García
- Servicio de Cuidados Intensivos y Urgencias, Hospital SAS de Jerez, C/Circunvalación s/n, 11407, Jerez de la Frontera, Spain. .,Department of Intensive Care Medicine, St George's Healthcare NHS Trust and St George's University of London, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - Manuel Gracia Romero
- Servicio de Cuidados Intensivos y Urgencias, Hospital SAS de Jerez, C/Circunvalación s/n, 11407, Jerez de la Frontera, Spain.
| | - Anselmo Gil Cano
- Servicio de Cuidados Intensivos y Urgencias, Hospital SAS de Jerez, C/Circunvalación s/n, 11407, Jerez de la Frontera, Spain.
| | - Hollmann D Aya
- Department of Intensive Care Medicine, St George's Healthcare NHS Trust and St George's University of London, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - Andrew Rhodes
- Department of Intensive Care Medicine, St George's Healthcare NHS Trust and St George's University of London, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - Robert Michael Grounds
- Department of Intensive Care Medicine, St George's Healthcare NHS Trust and St George's University of London, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - Maurizio Cecconi
- Department of Intensive Care Medicine, St George's Healthcare NHS Trust and St George's University of London, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| |
Collapse
|
49
|
Berger D, Bloechlinger S, Takala J, Sinderby C, Brander L. Heart-lung interactions during neurally adjusted ventilatory assist. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:499. [PMID: 25212533 PMCID: PMC4189198 DOI: 10.1186/s13054-014-0499-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/19/2014] [Indexed: 12/27/2022]
Abstract
Introduction Assist in unison to the patient’s inspiratory neural effort and feedback-controlled limitation of lung distension with neurally adjusted ventilatory assist (NAVA) may reduce the negative effects of mechanical ventilation on right ventricular function. Methods Heart–lung interaction was evaluated in 10 intubated patients with impaired cardiac function using esophageal balloons, pulmonary artery catheters and echocardiography. Adequate NAVA level identified by a titration procedure to breathing pattern (NAVAal), 50% NAVAal, and 200% NAVAal and adequate pressure support (PSVal, defined clinically), 50% PSVal, and 150% PSVal were implemented at constant positive end-expiratory pressure for 20 minutes each. Results NAVAal was 3.1 ± 1.1cmH2O/μV and PSVal was 17 ± 2 cmH20. For all NAVA levels negative esophageal pressure deflections were observed during inspiration whereas this pattern was reversed during PSVal and PSVhigh. As compared to expiration, inspiratory right ventricular outflow tract velocity time integral (surrogating stroke volume) was 103 ± 4%, 109 ± 5%, and 100 ± 4% for NAVAlow, NAVAal, and NAVAhigh and 101 ± 3%, 89 ± 6%, and 83 ± 9% for PSVlow, PSVal, and PSVhigh, respectively (p < 0.001 level-mode interaction, ANOVA). Right ventricular systolic isovolumetric pressure increased from 11.0 ± 4.6 mmHg at PSVlow to 14.0 ± 4.6 mmHg at PSVhigh but remained unchanged (11.5 ± 4.7 mmHg (NAVAlow) and 10.8 ± 4.2 mmHg (NAVAhigh), level-mode interaction p = 0.005). Both indicate progressive right ventricular outflow impedance with increasing pressure support ventilation (PSV), but no change with increasing NAVA level. Conclusions Right ventricular performance is less impaired during NAVA compared to PSV as used in this study. Proposed mechanisms are preservation of cyclic intrathoracic pressure changes characteristic of spontaneous breathing and limitation of right-ventricular outflow impedance during inspiration, regardless of the NAVA level. Trial registration Clinicaltrials.gov Identifier: NCT00647361, registered 19 March 2008 Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0499-8) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Cherpanath TGV, Smeding L, Lagrand WK, Hirsch A, Schultz MJ, Groeneveld JAB. Pulse pressure variation does not reflect stroke volume variation in mechanically ventilated rats with lipopolysaccharide-induced pneumonia. Clin Exp Pharmacol Physiol 2014; 41:98-104. [PMID: 24372424 DOI: 10.1111/1440-1681.12187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 11/26/2022]
Abstract
1. The present study examined the relationship between centrally measured stroke volume variation (SVV) and peripherally derived pulse pressure variation (PPV) in the setting of increased total arterial compliance (CA rt ). 2. Ten male Wistar rats were anaesthetized, paralysed and mechanically ventilated before being randomized to receive intrapulmonary lipopolysaccharide (LPS) or no LPS. Pulse pressure (PP) was derived from the left carotid artery, whereas stroke volume (SV) was measured directly in the left ventricle. Values of SVV and PPV were calculated over three breaths. Balloon inflation of a catheter positioned in the inferior vena cava was used, for a maximum of 30 s, to decrease preload while the SVV and PPV measurements were repeated. Values of CA rt were calculated as SV/PP. 3. Intrapulmonary LPS increased CA rt and SV. Values of SVV and PPV increased in both LPS-treated and untreated rats during balloon inflation. There was a correlation between SVV and PPV in untreated rats before (r = 0.55; P = 0.005) and during (r = 0.69; P < 0.001) occlusion of the vena cava. There was no such correlation in LPS-treated rats either before (r = -0.08; P = 0.70) or during (r = 0.36; P = 0.08) vena cava occlusion. 4. In conclusion, under normovolaemic and hypovolaemic conditions, PPV does not reflect SVV during an increase in CA rt following LPS-induced pneumonia in mechanically ventilated rats. Our data caution against their interchangeability in human sepsis.
Collapse
Affiliation(s)
- Thomas G V Cherpanath
- Department of Intensive Care Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|