1
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
2
|
An P, Wang Z. Application value of an artificial intelligence-based diagnosis and recognition system in gastroscopy training for graduate students in gastroenterology: a preliminary study. Wien Med Wochenschr 2024; 174:173-180. [PMID: 37676426 DOI: 10.1007/s10354-023-01020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE This study aimed to discuss the application value of an artificial intelligence-based diagnosis and recognition system (AIDRS) in the teaching activities for Bachelor of Medicine and Bachelor of Surgery (MBBS) in China. The learning performance of graduate students in gastroenterology during gastroscopy training with and without AIDRS was assessed. METHODS The study recruited 32 graduate students of the gastroenterology program at Jiangsu province hospital of Chinese medicine and Xiangyang No. 1 People's Hospital from March 2018 to March 2022 and randomly divided them into AIDRS (n = 16) and non-AIDRS (n = 16) groups. The AIDRS software was used for real-time monitoring of blind spots of gastroscopy to aid in lesion diagnosis and recognition in the AIDRS group. Only a conventional gastroscopic procedure was implemented in the non-AIDRS group. The final performance score, success rate of gastroscopy, lesion detection rate, and pain score of patients were compared between the two groups during gastroscopy. A self-prepared teaching and learning satisfaction questionnaire was administered to the two groups of students. RESULTS The AIDRS group had a higher final performance score (92.60 ± 2.83 vs. 89.21 ± 3.57, t = 2.98, P < 0.05), a higher success rate of gastroscopy (448/480 vs. 417/480, χ2 = 11.23, P < 0.05), and a higher detection rate of lesions (51/52 vs. 41/53, χ2 = 8.56, P < 0.05) compared with the non-AIDRS group. The pain scores of patients were lower in the AIDRS group than in the non-AIDRS group (3.40 [2.23, 3.98] vs. 4.45 [3.72, 4.75], Z = 3.04, P < 0.05). Besides, the average time for gastroscopy was lower in the AIDRS group than in the non-AIDRS group (7.15 ± 1.24 vs. 8.21 ± 1.26, t = 2.38, P = 0.02). The overall satisfaction level with the teaching program was higher in the AIDRS group (43.51 ± 2.29 vs. 40.93 ± 2.07, t = 3.33, P < 0.05). CONCLUSION In the context of medicine-education cooperation, AIDRS offered valuable assistance in gastroscopy training and increased the success rate of gastroscopy and teaching and learning satisfaction. AIDRS is worthy of wider-scale promotion.
Collapse
Affiliation(s)
- Peng An
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu province hospital of Chinese medicine, 155 Hanzhong Road, 210029, Nanjing, Jiangsu, China
- Department of Radiology and gastroenterology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, 441000, Xiangyang, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu province hospital of Chinese medicine, 155 Hanzhong Road, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel) 2024; 14:233. [PMID: 38398742 PMCID: PMC10890405 DOI: 10.3390/life14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Drug development is expensive, time-consuming, and has a high failure rate. In recent years, artificial intelligence (AI) has emerged as a transformative tool in drug discovery, offering innovative solutions to complex challenges in the pharmaceutical industry. This manuscript covers the multifaceted role of AI in drug discovery, encompassing AI-assisted drug delivery design, the discovery of new drugs, and the development of novel AI techniques. We explore various AI methodologies, including machine learning and deep learning, and their applications in target identification, virtual screening, and drug design. This paper also discusses the historical development of AI in medicine, emphasizing its profound impact on healthcare. Furthermore, it addresses AI's role in the repositioning of existing drugs and the identification of drug combinations, underscoring its potential in revolutionizing drug delivery systems. The manuscript provides a comprehensive overview of the AI programs and platforms currently used in drug discovery, illustrating the technological advancements and future directions of this field. This study not only presents the current state of AI in drug discovery but also anticipates its future trajectory, highlighting the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
4
|
Zha Y, Xue C, Liu Y, Ni J, De La Fuente JM, Cui D. Artificial intelligence in theranostics of gastric cancer, a review. MEDICAL REVIEW (2021) 2023; 3:214-229. [PMID: 37789960 PMCID: PMC10542883 DOI: 10.1515/mr-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/26/2023] [Indexed: 10/05/2023]
Abstract
Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma. Herein, we review recent advance of AI in early screening, diagnosis, therapy and prognosis of stomach carcinoma. Especially AI combined with breath screening early GC system improved 97.4 % of early GC diagnosis ratio, AI model on stomach cancer diagnosis system of saliva biomarkers obtained an overall accuracy of 97.18 %, specificity of 97.44 %, and sensitivity of 96.88 %. We also discuss concept, issues, approaches and challenges of AI applied in stomach cancer. This review provides a comprehensive view and roadmap for readers working in this field, with the aim of pushing application of AI in theranostics of stomach cancer to increase the early discovery ratio and curative ratio of GC patients.
Collapse
Affiliation(s)
- Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | | | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| |
Collapse
|
5
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
6
|
Yoo BS, D'Souza SM, Houston K, Patel A, Lau J, Elmahdi A, Parekh PJ, Johnson D. Artificial intelligence and colonoscopy − enhancements and improvements. Artif Intell Gastrointest Endosc 2021; 2:157-167. [DOI: 10.37126/aige.v2.i4.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
|
7
|
Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and hepatology: Status and challenges. World J Gastroenterol 2021; 27:1664-1690. [PMID: 33967550 PMCID: PMC8072192 DOI: 10.3748/wjg.v27.i16.1664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Originally proposed by John McCarthy in 1955, artificial intelligence (AI) has achieved a breakthrough and revolutionized the processing methods of clinical medicine with the increasing workloads of medical records and digital images. Doctors are paying attention to AI technologies for various diseases in the fields of gastroenterology and hepatology. This review will illustrate AI technology procedures for medical image analysis, including data processing, model establishment, and model validation. Furthermore, we will summarize AI applications in endoscopy, radiology, and pathology, such as detecting and evaluating lesions, facilitating treatment, and predicting treatment response and prognosis with excellent model performance. The current challenges for AI in clinical application include potential inherent bias in retrospective studies that requires larger samples for validation, ethics and legal concerns, and the incomprehensibility of the output results. Therefore, doctors and researchers should cooperate to address the current challenges and carry out further investigations to develop more accurate AI tools for improved clinical applications.
Collapse
Affiliation(s)
- Jia-Sheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Zi-Yi Lu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ming-Yu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Sarun Juengpanich
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jia-Hao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shi-Jie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Win Topatana
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Yin Zhou
- School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xu Feng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ji-Liang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|