1
|
Pei Z, Cao Y, Qi X, Li J, Tian J, Zhang Q, Liu L, Cai X, Wu P. Enhancing efficacy and mitigating toxicity of Semen Strychni: From traditional practices to modern pharmaceutical innovations. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119515. [PMID: 39983805 DOI: 10.1016/j.jep.2025.119515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Strychni (Maqianzi), the seeds of Strychnos nux-vomica L. (family Loganiaceae), is a traditional Chinese herbal medicine known for its anti-inflammatory, analgesic, and anti-tumor properties. However, the clinical application of Semen Strychni has been seriously limited due to its severe central nervous system toxicity and narrow therapeutic window. AIM OF THE STUDY The research aims to explore the ancient and modern techniques for mitigating toxicity and enhancing efficacy of Semen Strychni, such as processing with auxiliary materials, combined use with herbs, dosage forms and so on. The study seeks to provide a reference for in-depth research and safe clinical use while exploring future development directions and application prospects. MATERIALS AND METHODS Relevant information from 1957 to 2024 via databases was meticulously collected using the keywords "Semen Strychni", "reduce toxicity and increase efficacy", "preparations" and so on from esteemed scientific databases such as CNKI, PubMed, Google Scholar, and Baidu Scholar, as well as doctoral and master's dissertations and classic texts on Chinese herbs. RESULTS Many chemical constituents have been identified from Semen Strychni, including alkaloids, terpenoids, organic acids, and others. The toxic effects of Semen Strychni on the nerves, immune, and other systems have also been observed. Existing research has firmly established that brucine and strychnine are the primary sources of its toxicity. To mitigate these risks, the toxicity of Semen Strychni should be reduced prior to use. The most common detoxification strategies include processing and the combined use with other herbs in prescriptions. Furthermore, the development of novel dosage forms offers a new approach to enhance the safety and efficacy of Semen Strychni. However, these methods still possess some limitations, which should be validated and optimized in more diverse experimental and clinical studies. CONCLUSIONS This review serves to emphasize the urgency of addressing the toxicity concerns of Semen Strychni before considering its clinical application, and systematically summarizes various detoxification strategies employed to date. This study provides valuable insights for enhancing the efficacy and mitigating the toxicity of Semen Strychni. Further research is required to fully elucidate the composition variations and mechanisms existing in these attenuation methods. Such research endeavors contribute to the modernization and standardization of Semen Strychni usage and are of great significance for improving the safety of clinical applications.
Collapse
Affiliation(s)
- Zihan Pei
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yinsheng Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xinyu Qi
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jinying Li
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiaxuan Tian
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiyao Zhang
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Liang Liu
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Xiong Cai
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Ping Wu
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Kuang W, Xu J, Xu F, Huang W, Majid M, Shi H, Yuan X, Ruan Y, Hu X. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: a comprehensive review. Front Cell Dev Biol 2024; 12:1513426. [PMID: 39720008 PMCID: PMC11666564 DOI: 10.3389/fcell.2024.1513426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic atrophic gastritis (CAG) is a prevalent digestive system disease characterized by atrophy of the gastric mucosa and the disappearance of inherent gastric glands. According to the theory of Correa's cascade, CAG is an important pathological stage in the transformation from normal condition to gastric carcinoma. In recent years, the global incidence of CAG has been increasing due to pathogenic factors, including Helicobacter pylori infection, bile reflux, and the consumption of processed meats. In this review, we comprehensively described the etiology and clinical diagnosis of CAG. We focused on elucidating the regulatory mechanisms and promising therapeutic targets in CAG, with the expectation of providing insights and theoretical support for future research on CAG.
Collapse
Affiliation(s)
- Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jialin Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Fenting Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Weizhen Huang
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Muhammad Majid
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Hui Shi
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Xia Yuan
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Acupuncture, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
3
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother 2024; 176:116912. [PMID: 38850667 DOI: 10.1016/j.biopha.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ β-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region of China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
4
|
Qi S, Liang X, Wang Z, Jin H, Zou L, Yang J. Potential Mechanism of Tibetan Medicine Liuwei Muxiang Pills against Colorectal Cancer: Network Pharmacology and Bioinformatics Analyses. Pharmaceuticals (Basel) 2024; 17:429. [PMID: 38675391 PMCID: PMC11054834 DOI: 10.3390/ph17040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the mechanism through which Tibetan medicine Liuwei Muxiang (LWMX) pills acts against colorectal cancer (CRC). We firstly retrieved the active ingredients and the correlated targets of LWMX pills from public databases. The CRC-related targets were determined through bioinformatic analysis of a public CRC dataset. By computing the intersection of the drug-specific and disease-related targets, LWMX pill-CRC interaction networks were constructed using the protein-protein interaction (PPI) method and functional enrichment analysis. Subsequently, we determined the hub genes using machine learning tools and further verified their critical roles in CRC treatment via immune infiltration analysis and molecular docking studies. We identified 81 active ingredients in LWMX pills with 614 correlated targets, 1877 differentially expressed genes, and 9534 coexpression module genes related to CRC. A total of 5 target hub genes were identified among the 108 intersecting genes using machine learning algorithms. The immune infiltration analysis results suggested that LWMX pills could affect the CRC immune infiltration microenvironment by regulating the expression of the target hub genes. Finally, the molecular docking outcomes revealed stable binding affinity between all target hub proteins and the primary active ingredients of LWMX pills. Our findings illustrate the anti-CRC potential and the mechanism of action of LWMX pills and provide novel insights into multitarget medication for CRC treatment.
Collapse
Affiliation(s)
- Shaochong Qi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.Q.); (Z.W.); (H.J.)
- Sichuan University-Oxford University Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Liang
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (L.Z.)
| | - Zijing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.Q.); (Z.W.); (H.J.)
- Sichuan University-Oxford University Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.Q.); (Z.W.); (H.J.)
- Sichuan University-Oxford University Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqun Zou
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (L.Z.)
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.Q.); (Z.W.); (H.J.)
- Sichuan University-Oxford University Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Weng J, Wu XF, Shao P, Liu XP, Wang CX. Medicine for chronic atrophic gastritis: a systematic review, meta- and network pharmacology analysis. Ann Med 2024; 55:2299352. [PMID: 38170849 PMCID: PMC10769149 DOI: 10.1080/07853890.2023.2299352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE The aim of this study is to determine the effectiveness and reliability of adding traditional Chinese medicine (TCM) in the clinical intervention and explore mechanisms of action for chronic atrophic gastritis (CAG) through meta- and network pharmacology analysis (NPAs). METHODS A predefined search strategy was used to retrieve literature from PubMed, Embase database, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese BioMedical Literature Database (CBM), Wan Fang Data and China Science and Technology Journal Database (VIP). After applying inclusion and exclusion criteria, a total of 12 randomized controlled trials (RCTs) were included for meta-analysis to provide clinical evidence of the intervention effects. A network meta-analysis using Bayesian networks was conducted to observe the relative effects of different intervention measures and possible ranking of effects. The composition of the TCM formulation in the experimental group was analysed, and association rule mining was performed to identify hub herbal medicines. Target genes for CAG were searched in GeneCards, Online Mendelian Inheritance in Man, PharmGKB, Therapeutic Target Database and DrugBank. A regulatory network was constructed to connect the target genes with active ingredients of the hub herbal medicines. Enrichment analyses were performed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to examine the central targets from a comprehensive viewpoint. Protein-protein interaction networks (PPINs) were constructed to identify hub genes and conduct molecular docking with differentially expressed genes (DEGs) and corresponding active molecules. RESULTS A total of 1140 participants from 12 RCTs were included in the statistical analysis, confirming that the experimental group receiving the addition of TCM intervention had better clinical efficacy. Seven hub TCMs (Paeonia lactiflora, Atractylodes macrocephala, Pinellia ternata, Citrus reticulata, Codonopsis pilosula, Salvia miltiorrhiza and Coptis chinensis) were identified through association rule analysis of all included TCMs. Thirteen hub genes (CDKN1A, CASP3, STAT1, TP53, JUN, MAPK1, STAT3, MAPK3, MYC, HIF1A, FOS, MAPK14 and AKT1) were obtained from 90 gene PPINs. Differential gene expression analysis between the disease and normal gastric tissue identified MAPK1 and MAPK3 as the significant genes. Molecular docking analysis revealed that naringenin, luteolin and quercetin were the main active compounds with good binding activities to the two hub targets. GO analysis demonstrated the function of the targets in protein binding, while KEGG analysis indicated their involvement in important pathways related to cancer. CONCLUSIONS The results of a meta-analysis of 12 RCTs indicate that TCM intervention can improve the clinical treatment efficacy of CAG. NPAs identified seven hub TCM and 13 target genes associated with their actions, while bioinformatics analysis identified two DEGs between normal and CAG gastric tissues. Finally, molecular docking was employed to reveal the mechanism of action of the active molecules in TCM on the DEGs. These findings not only reveal the mechanisms of action of the active components of the TCMs, but also provide support for the development of new drugs, ultimately blocking the progression from chronic gastritis to gastric cancer.
Collapse
Affiliation(s)
- Jiao Weng
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiu-fang Wu
- The Second Hospital Affiliated with Shenyang Medical University, Shenyang, China
| | - Peng Shao
- The Second Hospital Affiliated with Shenyang Medical University, Shenyang, China
| | - Xing-pu Liu
- The Second Hospital Affiliated with Shenyang Medical University, Shenyang, China
| | - Cai-xia Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
6
|
Yang L, Liu X, Zhu J, Zhang X, Li Y, Chen J, Liu H. Progress in traditional Chinese medicine against chronic gastritis: From chronic non-atrophic gastritis to gastric precancerous lesions. Heliyon 2023; 9:e16764. [PMID: 37313135 PMCID: PMC10258419 DOI: 10.1016/j.heliyon.2023.e16764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic gastritis (CG) is a persistent inflammation of the gastric mucosa that can cause uncomfortable symptoms in patients. Traditional Chinese medicine (TCM) has been widely used to treat CG due to its precise efficacy, minimal side effects, and holistic approach. Clinical studies have confirmed the effectiveness of TCM in treating CG, although the mechanisms underlying this treatment have not yet been fully elucidated. In this review, we summarized the clinical research and mechanisms of TCM used to treat CG. Studies have shown that TCM mechanisms for CG treatment include H. pylori eradication, anti-inflammatory effects, immune modulation, regulation of gastric mucosal cell proliferation, apoptosis, and autophagy levels.
Collapse
Affiliation(s)
- Liangjun Yang
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xinying Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jiajie Zhu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xi Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ya Li
- Lin ‘an Hospital of Traditional Chinese Medicine, Hangzhou 311300, China
| | - Jiabing Chen
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Haiyan Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
7
|
Dhondrup R, Tidwell T, Zhang X, Feng X, Lobsang D, Hua Q, Geri D, Suonan DC, Fan G, Samdrup G. Tibetan medicine Liuwei Muxiang pills (LWMX pills) effectively protects mice from chronic non-atrophic gastritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154826. [PMID: 37167846 DOI: 10.1016/j.phymed.2023.154826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chronic non-atrophic gastritis (CNG) is the most common type of chronic gastritis. If not actively treated, it may induce gastric cancer (GC). Western medicine is effective in CNG, but there are more adverse reactions after long-term medication, and it is easy to relapse after treatment, which affects patients' health and life. Tibetan medicine Liuwei Muxiang Pills (LWMX pills) is a traditional Tibetan medicine compound, which has a unique curative effect in the treatment of gastric inflammation, especially chronic non-atrophic gastritis. However, the mechanisms of LWMX pills for treatment CNG still remain poor known. PURPOSE The aim of this study was to evaluate the therapeutic intervention potential of Tibetan medicine LWMX pills on CNG and explore its potential mechanisms in mice models. METHODS The mice models was established to evaluate the therapeutic effect of LWMX pills on CNG. The main components of LWMX pills were analyzed by GC-MS. HE staining, immunohistochemistry, proteomics and Western Blot were used to analyze the potential mechanism of LWMX pills for CNG treatment. RESULTS In the present study, LWMX pills containing costunolide, dehydrocostuslactone and antioxidants were found. IF results showed that the expression of ALDH1B1 in the control group was significantly lower than that in the model group in the gastric mucosa tissue, and the expression of ALDH1B1 was significantly lower in the 25 mg/ml LWMX Pills group (one month) and 25 mg/ml LWMX Pills group (two months) than in the model group. IHC revealed that model group samples expressed higher levels of Furin than 25 mg/ml LWMX Pills group samples, as evidenced by very strong staining of Furin in gastric mucosal cells. However, AMY2 staining in gastric mucosal cells did not differ significantly between the treated and control groups. the protein expression levels of these proteins were decreased in 25 mg/mL LWMX pills. Meanwhile, we found that the CAM1 protein expression in the in 25 mg/ml LWMX pills group (two mouths) was increased compared to the in 25 mg/ml LWMX pills group (one mouths).Western blotting showed that the protein expression levels of Furin, AMY2A, CPA3, ALDH1B1, Cam1, COXII, IL-6, IL-1β were decreased in 25 mg/mL LWMX pills. Meanwhile, that the CAM1 protein expression in the in 25 mg/ml LWMX pills group (two mouths) was increased compared to the in 25 mg/ml LWMX pills group (one mouths). CONCLUSION 25mg/ml LWMX pill treatment for one month had better therapeutic effect on mice CNG. Further proteomic results showed that LWMX pills maintain gastric function by inhibiting inflammation and oxidative stress, and we also found that LWMX pills regulate the expression of proteins associated with cancer development (Amy2, Furin).
Collapse
Affiliation(s)
- Rinchen Dhondrup
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China.
| | - Tawni Tidwell
- University of Wisconsin-Madison, Center for Healthy Minds, Madison, WI, 53703 United States
| | - XiaoKang Zhang
- Jingjie PTM Bio (Hangzhou) Co., Ltd., Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xuemei Feng
- Qinghai Provincial Tibetan Hospital, Xining 810007, Qinghai, People's Republic of China
| | - Dhondrup Lobsang
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| | - Qincuo Hua
- Qinghai Provincial Tibetan Hospital, Xining 810007, Qinghai, People's Republic of China
| | - Duojie Geri
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| | - Duojie Caidan Suonan
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, People's Republic of China
| | - Gyal Samdrup
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| |
Collapse
|