1
|
Mechanick JI. Critical illness-based chronic disease: a new framework for intensive metabolic support. Curr Opin Crit Care 2025:00075198-990000000-00261. [PMID: 40156275 DOI: 10.1097/mcc.0000000000001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
PURPOSE OF REVIEW This review addresses the novel concept of critical illness as a potential chronic disease. The high clinical and economic burdens of chronic critical illness and post-ICU syndromes are mainly due to refractoriness to therapy and consequently lead to significant complications. Interventions need to be preventive in nature and therefore a robust disease model is warranted. RECENT FINDINGS There are three paradigms that are leveraged to create a new critical illness-based chronic disease (CIBCD) model: metabolic model of critical illness, intensive metabolic support (IMS; insulinization and nutrition support), and driver-based chronic disease modeling. The CIBCD model consists of four stages: risk, predisease, (chronic) disease, and complications. The principal goal of the CIBCD model is to expose early opportunities to prevent disease progression, particularly further morbidity, complications, and mortality. IMS is used to target seminal pathophysiological events such as immune-neuroendocrine axis (INA) activation and failure to downregulate INA activation because of preexisting chronic diseases and recurrent pathological insults. SUMMARY The CIBCD model complements our understanding of critical illness and provides needed structure to preventive actions that can improve clinical outcomes. Many research, knowledge, and practice gaps exist, which will need to be addressed to optimize and validate this model.
Collapse
Affiliation(s)
- Jeffrey I Mechanick
- Kravis Center for Clinical Cardiovascular Health at Mount Sinai Fuster Heart Hospital, Metabolic Support, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Barna M, Dunovska K, Cepova J, Werle J, Prusa R, Bjørklud G, Melichercik P, Kizek R, Klapkova E. Short-term impact of vitamin K2 supplementation on biochemical parameters and lipoprotein fractions. Electrophoresis 2025; 46:152-166. [PMID: 39091191 DOI: 10.1002/elps.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
This study explored the short-term effects of vitamin K2 (VK2) supplementation on biochemical parameters (vitamin D, vitamin E, vitamin A, alkaline phosphatase, calcium, phosphorus (P), magnesium, metallothionein, triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lipoprotein fractions (albumin, HDL, very low-density lipoprotein (VLDL), LDL, and chylomicrons). A short-term experiment (24 h, six probands) was performed to track changes in VK2 levels after a single-dose intake (360 µg/day). Liquid chromatography-tandem mass spectrometry was used to monitor vitamin K levels (menaquinone-4 (MK-4), menaquinone-7 (MK-7), and vitamin K1 [VK1]) with a limit of detection of 1.9 pg/mL for VK1 and 3.8 pg/mL for the two forms of VK2. Results showed that MK-7 levels significantly increased within 2-6 h post-administration and then gradually declined. MK-4 levels were initially low, showing a slight increase, whereas VK1 levels rose initially and then decreased. Biochemical analyses indicated no significant changes in sodium, chloride, potassium, calcium, magnesium, albumin, or total protein levels. A transient increase in P was observed, peaking at 12 h before returning to baseline. Agarose gel electrophoresis of lipoprotein fractions revealed distinct chylomicron bands and variations in VLDL and HDL mobility, influenced by dietary lipids and VK2 supplementation. These findings suggest effective absorption and metabolism of MK-7 with potential implications for bone metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Milos Barna
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Geir Bjørklud
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Pavel Melichercik
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| |
Collapse
|
3
|
Paulus MC, Drent M, Kouw IWK, Balvers MGJ, Bast A, van Zanten ARH. Vitamin K: a potential missing link in critical illness-a scoping review. Crit Care 2024; 28:212. [PMID: 38956732 PMCID: PMC11218309 DOI: 10.1186/s13054-024-05001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Vitamin K is essential for numerous physiological processes, including coagulation, bone metabolism, tissue calcification, and antioxidant activity. Deficiency, prevalent in critically ill ICU patients, impacts coagulation and increases the risk of bleeding and other complications. This review aims to elucidate the metabolism of vitamin K in the context of critical illness and identify a potential therapeutic approach. METHODS In December 2023, a scoping review was conducted using the PRISMA Extension for Scoping Reviews. Literature was searched in PubMed, Embase, and Cochrane databases without restrictions. Inclusion criteria were studies on adult ICU patients discussing vitamin K deficiency and/or supplementation. RESULTS A total of 1712 articles were screened, and 13 met the inclusion criteria. Vitamin K deficiency in ICU patients is linked to malnutrition, impaired absorption, antibiotic use, increased turnover, and genetic factors. Observational studies show higher PIVKA-II levels in ICU patients, indicating reduced vitamin K status. Risk factors include inadequate intake, disrupted absorption, and increased physiological demands. Supplementation studies suggest vitamin K can improve status but not normalize it completely. Vitamin K deficiency may correlate with prolonged ICU stays, mechanical ventilation, and increased mortality. Factors such as genetic polymorphisms and disrupted microbiomes also contribute to deficiency, underscoring the need for individualized nutritional strategies and further research on optimal supplementation dosages and administration routes. CONCLUSIONS Addressing vitamin K deficiency in ICU patients is crucial for mitigating risks associated with critical illness, yet optimal management strategies require further investigation. IMPACT RESEARCH To the best of our knowledge, this review is the first to address the prevalence and progression of vitamin K deficiency in critically ill patients. It guides clinicians in diagnosing and managing vitamin K deficiency in intensive care and suggests practical strategies for supplementing vitamin K in critically ill patients. This review provides a comprehensive overview of the existing literature, and serves as a valuable resource for clinicians, researchers, and policymakers in critical care medicine.
Collapse
Affiliation(s)
- Michelle Carmen Paulus
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marjolein Drent
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- Interstitial Lung Diseases (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
- ILD Care Foundation Research Team, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| | - Imre Willemijn Kehinde Kouw
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michiel Gerard Juliaan Balvers
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- ILD Care Foundation Research Team, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| | - Arthur Raymond Hubert van Zanten
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands.
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Wang TW, Tan J, Li LY, Yang Y, Zhang XM, Wang JR. Combined analysis of inorganic elements and flavonoid metabolites reveals the relationship between flower quality and maturity of Sophora japonica L. FRONTIERS IN PLANT SCIENCE 2023; 14:1255637. [PMID: 38046598 PMCID: PMC10691490 DOI: 10.3389/fpls.2023.1255637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Flos Sophorae (FS), or the dried flower buds of Sophora japonica L., is widely used as a food and medicinal material in China. The quality of S. japonica flowers varies with the developmental stages (S1-S5) of the plant. However, the relationship between FS quality and maturity remains unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) and ultra-high performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry (UPLC-ESI-Q TRAP-MS/MS) were used to analyze inorganic elements and flavonoid metabolites, respectively. A combined analysis of the inorganic elements and flavonoid metabolites in FS was conducted to determine the patterns of FS quality formation. Sixteen inorganic elements and 173 flavonoid metabolites that accumulated at different developmental stages were identified. Notably, 54 flavonoid metabolites associated with the amelioration of major human diseases were identified, and Ca, P, K, Fe, and Cu were postulated to influence flavonoid metabolism and synthesis. This study offers a novel perspective and foundation for the further exploration of the rules governing the quality of plant materials.
Collapse
Affiliation(s)
- Tian-Wang Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Jun Tan
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Long-Yun Li
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Yong Yang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiao-Mei Zhang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ji-Rui Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| |
Collapse
|