1
|
Peri F, Amaddeo A, Badina L, Maschio M, Barbi E, Ghirardo S. T2-Low Asthma: A Discussed but Still Orphan Disease. Biomedicines 2023; 11:biomedicines11041226. [PMID: 37189844 DOI: 10.3390/biomedicines11041226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Asthma affects 10% of the worldwide population; about 5% of cases are severe with the need for target therapies such as biologics. All the biologics approved for asthma hit the T2 pathway of inflammation. T2-high asthma is classified as allergic and non-allergic, whereas T2-low asthma can be further defined as paucigranulocytic asthma, Type 1 and Type-17 inflammation and the neutrophilic form that accounts for 20-30% of all patients with asthma. Neutrophilic asthma's prevalence is even higher in patients with severe or refractory asthma. We searched Medline and PubMed archives from the past ten years for articles with the subsequent titles: "neutrophilic asthma", "non-type 2 asthma" and "paucigranulocytic asthma". We identified 177 articles; 49 were considered relevant by the title and 33 by the reading of the abstract. Most of these articles are reviews (n = 19); only 6 are clinical trials. No study identified an effective treatment. We used the literature reported by these articles to search for further biologic treatments that target pathways different from T2. We identified 177 articles, 93 of which were considered relevant for the review and included in the present article. In conclusion, T2-low asthma remains poorly investigated in terms of biomarkers, especially as a therapeutic orphan disease.
Collapse
Affiliation(s)
- Francesca Peri
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandro Amaddeo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Laura Badina
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Massimo Maschio
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Egidio Barbi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sergio Ghirardo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
2
|
Lyu X, Hu J, Dong W, Xu X. Intellectual Structure and Evolutionary Trends of Precision Medicine Research: Coword Analysis. JMIR Med Inform 2020; 8:e11287. [PMID: 32014844 PMCID: PMC7055756 DOI: 10.2196/11287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Precision medicine (PM) is playing a more and more important role in clinical practice. In recent years, the scale of PM research has been growing rapidly. Many reviews have been published to facilitate a better understanding of the status of PM research. However, there is still a lack of research on the intellectual structure in terms of topics. OBJECTIVE This study aimed to identify the intellectual structure and evolutionary trends of PM research through the application of various social network analysis and visualization methods. METHODS The bibliographies of papers published between 2009 and 2018 were extracted from the Web of Science database. Based on the statistics of keywords in the papers, a coword network was generated and used to calculate network indicators of both the entire network and local networks. Communities were then detected to identify subdirections of PM research. Topological maps of networks, including networks between communities and within each community, were drawn to reveal the correlation structure. An evolutionary graph and a strategic graph were finally produced to reveal research venation and trends in discipline communities. RESULTS The results showed that PM research involves extensive themes and, overall, is not balanced. A minority of themes with a high frequency and network indicators, such as Biomarkers, Genomics, Cancer, Therapy, Genetics, Drug, Target Therapy, Pharmacogenomics, Pharmacogenetics, and Molecular, can be considered the core areas of PM research. However, there were five balanced theme directions with distinguished status and tendencies: Cancer, Biomarkers, Genomics, Drug, and Therapy. These were shown to be the main branches that were both focused and well developed. Therapy, though, was shown to be isolated and undeveloped. CONCLUSIONS The hotspots, structures, evolutions, and development trends of PM research in the past ten years were revealed using social network analysis and visualization. In general, PM research is unbalanced, but its subdirections are balanced. The clear evolutionary and developmental trend indicates that PM research has matured in recent years. The implications of this study involving PM research will provide reasonable and effective support for researchers, funders, policymakers, and clinicians.
Collapse
Affiliation(s)
- Xiaoguang Lyu
- The Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiming Hu
- School of Information Management, Wuhan University, Wuhan, China.,Center for the Study of Information Resources, Wuhan University, Wuhan, China
| | - Weiguo Dong
- The Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Xu
- The Intensive Care Unit of Coronary Heart Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Thomson NC. Recent Developments In Bronchial Thermoplasty For Severe Asthma. J Asthma Allergy 2019; 12:375-387. [PMID: 31819539 PMCID: PMC6875488 DOI: 10.2147/jaa.s200912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Bronchial thermoplasty is approved in many countries worldwide as a non-pharmacological treatment for severe asthma. This review summarizes recent publications on the selection of patients with severe asthma for bronchial thermoplasty, predictors of a beneficial response and developments in the procedure and discusses specific issues about bronchial thermoplasty including effectiveness in clinical practice, mechanism of action, cost-effectiveness, and place in management. RESULTS Bronchial thermoplasty is a treatment option for patients with severe asthma after assessment and management of causes of difficult-to-control asthma, such as nonadherence, poor inhaler technique, comorbidities, under treatment, and other behavioral factors. Patients treated with bronchial thermoplasty in clinical practice have worse baseline characteristics and comparable clinical outcomes to clinical trial data. Bronchial thermoplasty causes a reduction in airway smooth muscle mass although it is uncertain whether this effect explains its efficacy since other mechanisms of action may be relevant, such as alterations in airway epithelial, gland, and/or nerve function; improvements in small airway function; or a placebo effect. The cost-effectiveness of bronchial thermoplasty is greater in countries where the costs of hospitalization and emergency department are high. The place of bronchial thermoplasty in the management of severe asthma is not certain, although some experts propose that bronchial thermoplasty should be considered for patients with severe asthma associated with non-type 2 inflammation or who fail to respond favorably to biologic therapies targeting type 2 inflammation. CONCLUSION Bronchial thermoplasty is a modestly effective treatment for severe asthma after assessment and management of causes of difficult-to-control asthma. Asthma morbidity increases during and shortly after treatment. Follow-up studies provide reassurance on the long-term safety of the procedure. Uncertainties remain about predictors of response, mechanism(s) of action, and place in management of severe asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Yamada T, Miyabe Y, Ueki S, Fujieda S, Tokunaga T, Sakashita M, Kato Y, Ninomiya T, Kawasaki Y, Suzuki S, Saito H. Eotaxin-3 as a Plasma Biomarker for Mucosal Eosinophil Infiltration in Chronic Rhinosinusitis. Front Immunol 2019; 10:74. [PMID: 30778348 PMCID: PMC6369170 DOI: 10.3389/fimmu.2019.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Chronic rhinosinusitis with nasal polyps exhibits marked eosinophilic infiltration and its mucosal eosinophilia is associated with more severe symptoms. The Japanese epidemiological survey of refractory eosinophilic chronic rhinosinusitis found that patients with nasal polyps required multiple surgeries when there were higher infiltrating eosinophils in the mucosa. In order to identify plasma biomarkers for local eosinophil infiltration in rhinosinusitis for surgery, we examined the levels of molecules in the plasma of patients and compared the number of infiltrating eosinophils in the nasal mucosa. Materials and Methods: Mucosal tissues from 97 patients with chronic rhinosinusitis (CRS) were obtained from the nasal polyps during surgery. Tissues were immediately fixed and sections were stained with hematoxylin-eosin. The number of eosinophils in the mucosa was counted at HPF (x 400). Blood samples were obtained and the plasma was stored at −80°C. We measured the plasma cytokine and chemokine levels using multiple assay systems according to the manufacturers' protocols. The tissues were divided into high- and low-eosinophil mucosal infiltration group for recurrence after endoscopic sinus surgery (ESS). We also observed chemokine secretion from nasal fibroblasts. Results: The plasma level of eotaxin-3/ CC chemokine ligand 26 (CCL26) was significantly higher in the high-eosinophil mucosal infiltration group (p < 0.005). The number of infiltrating eosinophils in the mucosa was significantly higher in the group with the higher eotaxin-3 level (p < 0.001), but there was no significant difference in the blood eosinophil numbers among two groups. A significant positive correlation was found between the mucosal eosinophil count and the plasma levels of eotaxin-3 (p < 0.005). The levels of interleukin 33 (IL-33) (p < 0.001) and thymic stromal-derived lymphopoietin (TSLP) (p < 0.005) were significantly higher in the high-level eotaxin-3 group. IL-13 strongly induced the secretion of eotaxin-3 from human nasal fibroblasts (p < 0.05). Conclusion: This is the first report suggesting eotaxin-3 as a plasma biomarker for mucosal eosinophil infiltration. Furthermore, the level of eotaxin-3 was found to be closely related to IL-33 and TSLP levels which indicate respiratory diseases.
Collapse
Affiliation(s)
- Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yui Miyabe
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Shigeharu Ueki
- Clinical Laboratory Medicine, Department of General Internal Medicine, Graduate School of Medicine, Akita University, Akita, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Takahiro Tokunaga
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yukinori Kato
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Takahiro Ninomiya
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Hidekazu Saito
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
5
|
Wang J, Cui J, She C, Xu D, Zhang Z, Wang H, Bai W. Differential innervation of tissues located at traditional acupuncture points in the rat forehead and face. Acupunct Med 2018; 36:408-414. [PMID: 30158109 DOI: 10.1136/acupmed-2017-011595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To compare the neural pathways associated with the tissues located at different traditional acupuncture points in the rat forehead and face using the cholera toxin B subunit (CTB) neural tracing technique. METHODS After injection of CTB into the tissues at GB14, ST2 and ST6 in the rat, the neural labelling associated with each acupuncture point was revealed by fluorescent immunohistochemistry of the nervous system, including the trigeminal ganglion (TRG), cervical dorsal root ganglia (DRG), spinal cord and brain. RESULTS The CTB labelling included sensory neurons and their transganglionic axonal terminals, as well as motor neurons. The labelled sensory neurons associated with GB14, ST2 and ST6 were distributed in both the TRG and cervical DRG, and their centrally projected axons terminated in an orderly fashion at their corresponding targets in the spinal trigeminal nucleus and cervical spinal dorsal horn. In addition, labelled motor neurons were observed in the facial motor nucleus, trigeminal motor nucleus and cervical spinal ventral horn, in which facial motor neurons projected to the tissues located at all three acupuncture points. Trigeminal motor neurons innervated both ST2 and ST6, while spinal motor neurons only correlated with ST6. CONCLUSIONS These results indicate that the tissues located at each of these three traditional acupuncture points in the rat forehead and face has its own sensory and motor connection with the nervous system in a region-specific pattern through distinct neural pathways. Understanding the neuroanatomical characteristics of acupuncture points from the peripheral nervous system to the central nervous system should help inform acupuncture point selection according to the demands of the clinical situation.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen She
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Thomson NC. Bronchial thermoplasty as a treatment for severe asthma: controversies, progress and uncertainties. Expert Rev Respir Med 2018; 12:269-282. [PMID: 29471685 DOI: 10.1080/17476348.2018.1444991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bronchial thermoplasty is a licensed non-pharmacological treatment for severe asthma. Area covered: This article considers evidence for the efficacy and safety of bronchial thermoplasty from clinical trials and observational studies in clinical practice. Its place in the management of severe asthma, predictors of response and mechanisms of action are reviewed. Expert commentary: Bronchial thermoplasty improves quality of life and reduces exacerbations in moderate to severe asthma. Morbidity from asthma is increased during treatment. Overall, patients treated in clinical practice have worse baseline characteristics and comparable clinical outcomes to trial data. Follow-up studies provide reassurance on long-term safety. Despite some progress, future research needs to investigate uncertainties about predictors of response, mechanism of action and place in management of asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- a Institute of Infection, Immunity & Inflammation , University of Glasgow , Glasgow , UK
| |
Collapse
|
7
|
Martin Alonso A, Saglani S. Mechanisms Mediating Pediatric Severe Asthma and Potential Novel Therapies. Front Pediatr 2017; 5:154. [PMID: 28725641 PMCID: PMC5497140 DOI: 10.3389/fped.2017.00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Although a rare disease, severe therapy-resistant asthma in children is a cause of significant morbidity and results in utilization of approximately 50% of health-care resources for asthma. Improving control for children with severe asthma is, therefore, an urgent unmet clinical need. As a group, children with severe asthma have severe and multiple allergies, steroid resistant airway eosinophilia, and significant structural changes of the airway wall (airway remodeling). Omalizumab is currently the only add-on therapy that is licensed for use in children with severe asthma. However, limitations of its use include ineligibility for approximately one-third of patients because of serum IgE levels outside the recommended range and lack of clinical efficacy in a further one-third. Pediatric severe asthma is thus markedly heterogeneous, but our current understanding of the different mechanisms underpinning various phenotypes is very limited. We know that there are distinctions between the factors that drive pediatric and adult disease since pediatric disease develops in the context of a maturing immune system and during lung growth and development. This review summarizes the current data that give insight into the pathophysiology of pediatric severe asthma and will highlight potential targets for novel therapies. It is apparent that in order to identify novel treatments for pediatric severe asthma, the challenge of undertaking mechanistic studies using age appropriate experimental models and airway samples from children needs to be accepted to allow a targeted approach of personalized medicine to be achieved.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Respiratory Pediatrics, The Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|