1
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
3
|
Skov M, Hansen CR, Pressler T. Cystic fibrosis - an example of personalized and precision medicine. APMIS 2019; 127:352-360. [PMID: 30761610 DOI: 10.1111/apm.12915] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is a severe, monogenic, autosomal recessive disease caused by mutations in the CFTR (cystic fibrosis transmembrane regulator) gene, where disturbed chloride and bicarbonate transportation in epithelial cells results in a multiorgan disease with primarily pulmonary infections and pancreatic insufficiency. In 1968, the Copenhagen CF Center was established, and centralized care of CF patients with monthly control was introduced. Close monitoring and treatment of Pseudomonas lung infection as well as segregation of patients with different infection status improved the clinical outcome as well as survival. Prophylactic basic treatment as well as infection treatments follow specific algorithms. A variety of comorbidities have all along the pulmonary infection control necessitated personalized care, adjusted to the patients' phenotype. With the introduction of CFTR modulators, the treatment has shifted from prophylactic, symptomatic type toward a new era of precision medicine targeting the basic defect according to the patients' CFTR genotype. Future directions will focus on further improvement of the CFTR modulators and gene therapy, as well as modifier genes and CF phenotype.
Collapse
Affiliation(s)
- Marianne Skov
- Department of Pediatrics, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Chang AB, Grimwood K. Contemporary Concise Review 2018: Bronchiectasis. Respirology 2019; 24:382-389. [PMID: 30743310 DOI: 10.1111/resp.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Anne B Chang
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, Australia.,Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Department of Infectious Diseases, Gold Coast Health, Gold Coast, QLD, Australia.,Department of Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| |
Collapse
|