1
|
Han W, Wu X, Wang L, Qu C, Dou L, Fang Y, Sun P. Altered brain function in treatment-resistant depression patients: A resting-state functional magnetic resonance imaging study. Neurosci Lett 2024; 842:138004. [PMID: 39341331 DOI: 10.1016/j.neulet.2024.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND It has been established that there are functional changes in the brain of treatment-resistant depression (TRD) patients, but previous studies of functional connectivity (FC) usually involved selection of regions of interest based on accumulated a priori knowledge of the disorder. In this study, we combine amplitude of low-frequency fluctuation (ALFF) and FC; this approach, based on the abnormal ALFF, may provide some insights into the neural basis of the disease in terms of fMRI signals of low-frequency fluctuations. METHODS A total of 16 TRD patients, who visited the Qingdao Mental Health Center, Shandong Province, China between March 2023 and January 2024, along with 16 normal subjects, were enrolled into this study for functional imaging. In this study, we first explored the ALFF changes of TRD patients at a baseline resting state. Second, we selected the regions that were significantly changed in the ALFF as seeds and calculated the regional activity and functional connectivity (FC) of these regions using a seed-based approach. We also calculated correlations between the percent change in the PDQ-5D scores and ALFF values in brain regions with differing activity for TRD patients. RESULTS During the baseline resting state, by using the ALFF, we found a significantly decreased or increased ALFF in the TRD patients relative to the controls. These regions were located in the left/right postcentral gyrus (PoCG.L/PoCG.R), right cuneus(CUN.R). We found that the ALFF values of the right hippocampus (HIP.R) in the TRD group were negatively correlated with the PDQ-5D score. Then, we selected these brain regions as seeds to investigate the FC changes in brains of TRD patients. We found abnormal functional connectivity in left/right middle frontal gyrus(MFG.L/MFG.R), the right Inferior frontal gyrus, opercular part (IFGoperc.R), the left/right Anterior cingulate and paracingulate gyri (ACC.L/ACC.R), the right supramarginal gyrus (SMG.R), and the right Calcarine fissure and surrounding cortex (CAL.R). CONCLUSION We found a larger range of altered brain regions in TRD patients compared to healthy controls, especially in the central executive network (CEN), salience network (SN) and default mode network (DMN).
Collapse
Affiliation(s)
- Weijian Han
- Qingdao University Medical College, Qingdao 266000, China; Qingdao Mental Health Center, Qingdao 266034, China
| | - Xiaohui Wu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ligang Wang
- Qingdao Mental Health Center, Qingdao 266034, China
| | - Chunhui Qu
- Qingdao Mental Health Center, Qingdao 266034, China
| | - Liqiang Dou
- Qingdao Pingdu Mental Health Center, Qingdao 266700, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Neuroscience, Shanghai Institute for Biological Sciences, CAS, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao 266034, China.
| |
Collapse
|
2
|
Wu D, Li J, Wang J. Altered neural activities during emotion regulation in depression: a meta-analysis. J Psychiatry Neurosci 2024; 49:E334-E344. [PMID: 39455086 PMCID: PMC11530268 DOI: 10.1503/jpn.240046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Deficient neural activities during emotion regulation have been reported in depression. We sought to conduct a meta-analysis to provide a comprehensive description of these neural alterations during use of emotion regulation strategies among patients with depression, including major depressive disorder (MDD) and bipolar disorder (BD). METHODS We identified neuroimaging studies of abnormal neural activities during emotion regulation in depression. We extracted the peak coordinates and effect sizes of differences in brain activity between patients and healthy controls. Using seed-based d mapping, we conducted voxel-wise meta-analyses of the neural activation pattern differences between the 2 groups across conditions involving emotion regulation and those where emotion regulation was not needed. RESULTS We included 33 studies reporting 34 data sets, including 23 involving MDD (571 people with MDD and 578 matched controls) and 11 involving BD (358 people with BD and 369 matched controls). Overall, compared with controls, patients with depression showed hyperactivity in the insula and postcentral gyrus, and hypoactivity in the prefrontal part of the inferior, middle, and superior frontal gyrus, the middle temporal gyrus, and the supplementary motor area. In subgroup analyses, data from patients with MDD and studies focused on decreasing negative emotions or using the emotional strategy of reappraisal reported specific hypoactivity in the middle cerebellar peduncles. LIMITATIONS Given limited studies involving patients with BD, we were unable to detect the common and distinct abnormalities in neural activation between MDD and BD. We did not conduct any meta-regression analyses because of limited information. CONCLUSION In this meta-analysis, we identified hyperactivity in brain regions associated with emotional experience and hypoactivity in brain regions associated with cognitive control during emotion regulation among patients with depression, relative to healthy controls. These findings could help indicate a target for future interventions aimed at increasing emotion regulation capacity for patients with depression.
Collapse
Affiliation(s)
- Dihua Wu
- From the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wu, Li, Wang); the Centre for Health Services Research, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia (Wu)
| | - Jingxuan Li
- From the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wu, Li, Wang); the Centre for Health Services Research, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia (Wu)
| | - Junjing Wang
- From the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wu, Li, Wang); the Centre for Health Services Research, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia (Wu)
| |
Collapse
|
3
|
Park H, Kuplicki R, Paulus MP, Guinjoan SM. Rumination and Overrecruitment of Cognitive Control Circuits in Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:800-808. [PMID: 38703822 PMCID: PMC11305927 DOI: 10.1016/j.bpsc.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Rumination is associated with greater cognitive dysfunction and treatment resistance in major depressive disorder (MDD), but its underlying neural mechanisms are not well understood. Because rumination is characterized by difficulty in controlling negative thoughts, the current study investigated whether rumination was associated with aberrant cognitive control in the absence of negative emotional information. METHODS Individuals with MDD (n = 176) and healthy control individuals (n = 52) completed the stop signal task with varied stop signal difficulty during functional magnetic resonance imaging. In the task, a longer stop signal asynchrony made stopping difficult (hard stop), whereas a shorter stop signal asynchrony allowed more time for stopping (easy stop). RESULTS In participants with MDD, higher rumination intensity was associated with greater neural activity in response to difficult inhibitory control in the frontoparietal regions. Greater activation for difficult inhibitory control associated with rumination was also positively related to state fear. The imaging results provide compelling evidence for the neural basis of inhibitory control difficulties in individuals with MDD with high rumination. CONCLUSIONS The association between higher rumination intensity and greater neural activity in regions involved in difficult inhibitory control tasks may provide treatment targets for interventions aimed at improving inhibitory control and reducing rumination in this population.
Collapse
Affiliation(s)
- Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas at Dallas, Dallas, Texas.
| | | | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Science, University of Tulsa, Tulsa, Oklahoma
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, Oklahoma State University Health Sciences Center, Tulsa, Oklahoma
| |
Collapse
|
4
|
Juan Q, Shiwan T, Yurong S, Jiabo S, Yu C, Shui T, Zhijian Y, Qing L. Brain structural and functional abnormalities in affective network are associated with anxious depression. BMC Psychiatry 2024; 24:533. [PMID: 39054442 PMCID: PMC11270941 DOI: 10.1186/s12888-024-05970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Anxious depression (AD) is a common subtype of major depressive disorder (MDD). Neuroimaging studies of AD have revealed inconsistent and heterogeneous brain alterations with the use of single-model methods. Therefore, it is necessary to explore the pathogenesis of AD using multi-model imaging analyses to obtain more homogeneous and robust results. METHODS One hundred and eighty-two patients with MDD and 64 matched healthy controls (HCs) were recruited. Voxel-based morphometry (VBM) was used to estimate the gray matter volume (GMV) of all subjects. The GMV differences between the AD and non-anxious depression (NAD) participants were used as regions of interest (ROIs) for subsequent resting state functional connectivity (rs-FC) analyses. Correlation analysis was used to evaluate the associations between clinical symptoms and abnormal function in specific brain areas. RESULTS Decreased GMV in the medial frontal gyrus (MFG) and the superior frontal gyrus (SFG) was observed in the AD group compared to the NAD group. Taking the MFG and SFG as ROIs, the rs-FC analysis revealed decreased FC between the left SFG and left temporal pole and between the left SFG and right MFG in the AD group compared to the NAD group. Finally, the FC between the left SFG and left temporal pole was negatively correlated with HAMD-17 scores in the AD group. CONCLUSION By combining the GMV and rs-FC models, this study revealed that structural and functional disruption of the affective network may be an important pathophysiology underlying AD. The structural impairment may serve as the foundation of the functional impairment.
Collapse
Affiliation(s)
- Qiao Juan
- Department of Psychology, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, 221004, China
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Shiwan
- West China Hospital, Mental Health Center, Sichuan University, Chengdu, 610047, China
| | - Sun Yurong
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Shi Jiabo
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Chen Yu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Tian Shui
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Zhijian
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lu Qing
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China.
| |
Collapse
|
5
|
Liu N, Sun H, Yang C, Li X, Gao Z, Gong Q, Zhang W, Lui S. The difference in volumetric alternations of the orbitofrontal-limbic-striatal system between major depressive disorder and anxiety disorders: A systematic review and voxel-based meta-analysis. J Affect Disord 2024; 350:65-77. [PMID: 38199394 DOI: 10.1016/j.jad.2024.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and anxiety disorders (ANX) are psychiatric disorders with high mutual comorbidity rates that might indicate some shared neurobiological pathways between them, but they retain diverse phenotypes that characterize themselves specifically. However, no consistent evidence exists for common and disorder-specific gray matter volume (GMV) alternations between them. METHODS A systematic review and meta-analysis on voxel-based morphometry studies of patients with MDD and ANX were performed. The effect of comorbidity was explicitly controlled during disorder-specific analysis and particularly investigated in patient with comorbidity. RESULTS A total of 45 studies with 54 datasets comprising 2196 patients and 2055 healthy participants met the inclusion criteria. Deficits in the orbitofrontal cortex, striatum, and limbic regions were found in MDD and ANX. The disorder-specific analyses showed decreased GMV in the bilateral anterior cingulate cortex, right striatum, hippocampus, and cerebellum in MDD, while decreased GMV in the left striatum, amygdala, insula, and increased cerebellar volume in ANX. A totally different GMV alternation pattern was shown involving bilateral temporal and parietal gyri and left fusiform gyrus in patients with comorbidity. LIMITATIONS Owing to the design of included studies, only partial patients in the comorbid group had a secondary comorbidity diagnosis. CONCLUSION Patients with MDD and ANX shared a structural disruption in the orbitofrontal-limbic-striatal system. The disorder-specific effects manifested their greatest severity in distinct lateralization and directionality of these changes that differentiate MDD from ANX. The comorbid group showed a totally different GMV alternation pattern, possibly suggesting another illness subtype that requires further investigation.
Collapse
Affiliation(s)
- Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xing Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
6
|
Romeo Z, Biondi M, Oltedal L, Spironelli C. The Dark and Gloomy Brain: Grey Matter Volume Alterations in Major Depressive Disorder-Fine-Grained Meta-Analyses. Depress Anxiety 2024; 2024:6673522. [PMID: 40226746 PMCID: PMC11919126 DOI: 10.1155/2024/6673522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/09/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2025] Open
Abstract
Background While the brain correlates of major depressive disorder (MDD) have been extensively studied, there is no consensus conclusion so far. Various meta-analyses tried to determine the most consistent findings, but the results are often discordant for grey matter volume (GMV) atrophy and hypertrophy. Applying rigorous and stringent inclusion criteria and controlling for confounding factors, such as the presence of anxiety comorbidity, we carried out two novel meta-analyses on the existing literature to unveil MDD signatures. Methods A systematic literature search was performed up to January 2023. Seventy-three studies on MDD patients reporting GMV abnormalities were included in the first meta-analysis, for a total of 6167 patients and 6237 healthy controls (HC). To test the effects of anxiety comorbidity, we conducted a second meta-analysis, by adding to the original pure MDD sample a new cohort of MDD patients with comorbid anxiety disorders (308 patients and 342 HC). An activation likelihood estimation (ALE) analysis and a coordinate-based mapping approach separate for atrophy and hypertrophy were used to identify common brain structural alterations among patients. Results The pure MDD sample exhibited atrophy in the left insula, as well as hypertrophy in the bilateral amygdala and parahippocampal gyri. When we added patients with comorbid anxiety to the original sample, bilateral insula atrophy emerged, whereas the hypertrophy results were not replicated. Conclusions Our findings revealed important structural alterations in pure MDD patients, particularly in the insula and amygdala, which play key roles in sensory input integration and in emotional processing, respectively. Additionally, the amygdala and parahippocampal gyrus hypertrophy may be related to MDD functional overactivation to emotional stimuli, rumination, and overactive self-referential thinking. Conversely, the presence of anxiety comorbidity revealed separate effects which were not seen in the pure MDD sample, underscoring the importance of strict inclusion criteria for investigations of disorder-specific effects.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Margherita Biondi
- Department of General Psychology, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
He Z, Zheng Y, Ni J, Huang J, Pang Q, Chen T, Muhlert N, Elliott R. Loneliness is related to smaller gray matter volumes in ACC and right VLPFC in people with major depression: a UK biobank study. Cereb Cortex 2023; 33:11656-11667. [PMID: 37874025 DOI: 10.1093/cercor/bhad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
The anterior cingulate cortex (ACC) and right ventrolateral prefrontal cortex (VLPFC) are thought to have important roles in loneliness (feeling of social isolation/exclusion) experience or regulation and in the pathophysiology of their disturbance in major depressive disorder (MDD). However, the structural abnormalities of these regions and the correlates with loneliness in MDD across the healthy population have not fully been clarified. The study analyzed the link between loneliness and gray matter volumes (GMVs) in the ACC and right VLPFC among 1,005 patients with MDD and 7,247 healthy controls (HCs) using UK Biobank data. Significant reductions in GMV in the right VLPFC were found in MDD males compared to HCs. MDD males also showed a higher association between loneliness and reduced GMVs in the right VLPFC and bilateral ACC than HCs. No such associations were found in MDD females. The findings suggest that loneliness may influence brain structures crucial for emotion experience and regulation, particularly in middle-older aged men with MDD. This highlights the potential adverse effects of loneliness on brain structure in MDD and suggests that social engagement could have a positive impact.
Collapse
Affiliation(s)
- Zhenhong He
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- Division of Neuroscience and Experimental Psychology, School of Biological Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Youcun Zheng
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jingxuan Ni
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jin Huang
- School of Mathematical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Qingqing Pang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Tongtong Chen
- School of Humanities, Shenzhen University, Shenzhen 518060, China
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, School of Biological Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, School of Biological Science, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Sanchez SM, Tsuchiyagaito A, Kuplicki R, Park H, Postolski I, Rohan M, Paulus MP, Guinjoan SM. Repetitive Negative Thinking-Specific and -Nonspecific White Matter Tracts Engaged by Historical Psychosurgical Targets for Depression. Biol Psychiatry 2023; 94:661-671. [PMID: 36965550 PMCID: PMC10517085 DOI: 10.1016/j.biopsych.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.
Collapse
Affiliation(s)
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | | | - Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas, Dallas, Texas
| | - Ivan Postolski
- Institute for Research in Computational Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires, Argentina
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, Oklahoma University Health Sciences Center, Tulsa, Oklahoma.
| |
Collapse
|
9
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Chen Y, Jia L, Gao W, Wu C, Mu Q, Fang Z, Hu S, Huang M, Zhang P, Lu S. Alterations of brainstem volume in patients with first-episode and recurrent major depressive disorder. BMC Psychiatry 2023; 23:687. [PMID: 37735630 PMCID: PMC10512480 DOI: 10.1186/s12888-023-05146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent mental health condition characterized by recurrent episodes in a substantial proportion of patients. The number of previous episodes is one of the most crucial predictors of depression recurrence. However, the underlying neural mechanisms remain unclear. To date, there have been limited neuroimaging studies investigating morphological changes of the brainstem in patients with first-episode MDD (FMDD) and recurrent MDD (RMDD). This study aimed to examine volumetric changes of individual brainstem regions in relation to the number of previous episodes and disease duration. METHOD A total of 111 individuals including 36 FMDD, 25 RMDD, and 50 healthy controls (HCs) underwent T1-weighted structural magnetic resonance imaging scans. A Bayesian segmentation algorithm was used to analyze the volume of each brainstem region, including the medulla oblongata, pons, midbrain, and superior cerebellar peduncle (SCP), as well as the whole brainstem volume. Analyses of variance (ANOVA) were performed to obtain brain regions with significant differences among three groups and then post hoc tests were calculated for inter-group comparisons. Partial correlation analyses were further conducted to identify associations between regional volumes and clinical features. RESULTS The ANOVA revealed significant brainstem volumetric differences among three groups in the pons, midbrain, SCP, and the whole brainstem (F = 3.996 ~ 5.886, adjusted p = 0.015 ~ 0.028). As compared with HCs, both groups of MDD patients showed decreased volumes in the pons as well as the entire brainstem (p = 0.002 ~ 0.034), however, only the FMDD group demonstrated a significantly reduced volume in the midbrain (p = 0.003). Specifically, the RMDD group exhibited significantly decreased SCP volume when comparing to both FMDD (p = 0.021) group and HCs (p = 0.008). Correlation analyses revealed that the SCP volumes were negatively associated with the number of depressive episodes (r=-0.36, p < 0.01) and illness duration (r=-0.28, p = 0.035) in patients with MDD. CONCLUSION The present findings provided evidence of decreased brainstem volume involving in the pathophysiology of MDD, particularly, volumetric reduction in the SCP might represent a neurobiological marker for RMDD. Further research is needed to confirm our observations and deepen our understanding of the neural mechanisms underlying depression recurrence.
Collapse
Affiliation(s)
- Yue Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Hangzhou, Zhejiang, 311200, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
11
|
Mo D, Guo P, Hu S, Tao R, Zhong H, Liu H. Characteristics and correlation of gray matter volume and somatic symptoms in adolescent patients with depressive disorder. Front Psychiatry 2023; 14:1197854. [PMID: 37559918 PMCID: PMC10407247 DOI: 10.3389/fpsyt.2023.1197854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background Adolescent patients with depressive disorders commonly exhibit somatic symptoms, which have a significant negative impact on their treatment and prognosis. Despite this, specific brain imaging characteristics of these symptoms have been poorly studied. Methods The Hamilton Depression Rating scale (HAMD-17), Children's Functional Somatization scale (CSI), and Toronto Alexithymia scale (TAS) were used to evaluate the clinical symptoms of adolescent depression. We analyzed the correlation between brain gray matter volume (GMV) and clinical symptoms in adolescent patients with depression and somatic symptoms. Results The depression subgroups with and without functional somatic symptoms (FSS) had higher scores on the HAMD-17, CSI, and TAS than the normal control group. The group with FSS had higher HAMD-17, CSI, and TAS scores than the depression group without FSS (p < 0.05). CSI and TAS scores were positively correlated (r = 0.378, p < 0.05). The GMV of the right supplementary motor area was higher in the depression groups with and without FSSs than in the normal control group, and the GMV was higher in the group without FSS than in the group with FSS (F = 29.394, p < 0.05). The GMV of the right supplementary motor area was negatively correlated with CSI in the depressed group with FSS (r = -0.376, p < 0.05). In the group with depression exhibiting FSS, CSI scores were positively correlated with GMV of the middle occipital gyrus (pr = 0.665, p = 0.0001), and TAS scores were positively correlated with GMV of the caudate nucleus (pr = 0.551, p = 0.001). Conclusion Somatic symptoms of adolescent depressive disorder are associated with alexithymia; moreover, somatic symptoms and alexithymia in adolescent patients with depressive disorders are correlated with GMV changes in different brain regions.
Collapse
Affiliation(s)
- Daming Mo
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Pengfei Guo
- Department of Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Shuwen Hu
- Clinical Psychological Science, Anhui Provincial Children’s Hospital, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Associations between cortical thickness and anxious/depressive symptoms differ by the quality of early care. Dev Psychopathol 2023; 35:73-84. [PMID: 35045914 PMCID: PMC9023591 DOI: 10.1017/s0954579421000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A variety of childhood experiences can lead to anxious/depressed (A/D) symptoms. The aim of the present study was to explore the brain morphological (cortical thickness and surface area) correlates of A/D symptoms and the extent to which these phenotypes vary depending on the quality of the parenting context in which children develop. Structural magnetic resonance imaging (MRI) scans were acquired on 45 children with Child Protective Services (CPS) involvement due to risk of not receiving adequate care (high-risk group) and 25 children without CPS involvement (low-risk group) (rangeage = 8.08-12.14; Mage = 10.05) to assess cortical thickness (CT) and cortical surface area (SA). A/D symptoms were measured using the Child Behavioral Checklist. The association between A/D symptoms and CT, but not SA, differed by risk status such that high-risk children showed decreasing CT as A/D scores increased, whereas low-risk children showed increasing CT as A/D scores increased. This interaction was specific to CT in prefrontal, frontal, temporal, and parietal cortical regions. The groups had marginally different A/D scores, in the direction of higher risk being associated with lower A/D scores. Results suggest that CT correlates of A/D symptoms are differentially shaped by the quality of early caregiving experiences and should be distinguished between high- and low-risk children.
Collapse
|
13
|
Lu F, Cui Q, Chen Y, He Z, Sheng W, Tang Q, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Zeng Y, Chen H. Insular-associated causal network of structural covariance evaluating progressive gray matter changes in major depressive disorder. Cereb Cortex 2023; 33:831-843. [PMID: 35357431 DOI: 10.1093/cercor/bhac105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Morphometric studies demonstrated wide-ranging distribution of brain structural abnormalities in major depressive disorder (MDD). OBJECTIVE This study explored the progressive gray matter volume (GMV) changes pattern of structural network in 108 MDD patients throughout the illness duration by using voxel-based morphometric analysis. METHODS The causal structural covariance network method was applied to map the causal effects of GMV alterations between the original source of structural changes and other brain regions as the illness duration prolonged in MDD. This was carried out by utilizing the Granger causality analysis to T1-weighted data ranked based on the disease progression information. RESULTS With greater illness duration, the GMV reduction was originated from the right insula and progressed to the frontal lobe, and then expanded to the occipital lobe, temporal lobe, dorsal striatum (putamen and caudate) and the cerebellum. Importantly, results revealed that the right insula was the prominent node projecting positive causal influences (i.e., GMV decrease) to frontal lobe, temporal lobe, postcentral gyrus, putamen, and precuneus. While opposite causal effects were detected from the right insula to the angular, parahippocampus, supramarginal gyrus and cerebellum. CONCLUSIONS This work may provide further information and vital evidence showing that MDD is associated with progressive brain structural alterations.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuhong Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
14
|
Jiang J, Li L, Lin J, Hu X, Zhao Y, Sweeney JA, Gong Q. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases. Neurosci Biobehav Rev 2023; 144:104991. [PMID: 36476776 DOI: 10.1016/j.neubiorev.2022.104991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Structural neuroimaging studies have identified brain areas implicated in the pathogenesis of major depressive disorder (MDD). However, findings have been inconsistent, potentially due to variable illness duration and effects of antidepressant treatment. Using a meta-analytic approach, we compared gray matter (GM) volumes in patients grouped by medication status (naïve and treated) and illness duration (early course and long-term ill) to identify potential treatment and illness duration effects on brain structure. A total of 70 studies were included, including 3682 patients and 3469 controls. The pooled analysis found frontal, temporal and limbic regions with decreased GM volume in MDD patients. Additional analyses indicated that larger GM volume in the right striatum and smaller GM volume in the right precuneus are likely to be associated with drug effects, while smaller GM volume in the right temporal gyrus may correlate with longer illness duration. Similar GM decreases in bilateral medial frontal cortex between patient subgroups suggest that this alteration may persist over the course of illness and drug treatment.
Collapse
Affiliation(s)
- Jing Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China.
| |
Collapse
|
15
|
Zhao W, Zhang X, Zhou X, Song X, Zhang Z, Xu L, Zhou F, Kendrick KM. Depression mediates the association between insula-frontal functional connectivity and social interaction anxiety. Hum Brain Mapp 2022; 43:4266-4273. [PMID: 35596617 PMCID: PMC9435016 DOI: 10.1002/hbm.25952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
High rates of comorbidity between depression and anxiety are frequently observed. However, few studies have investigated the relationship between depression and social interaction anxiety using a dimensional approach. The current study aimed to explore the associations between depression and social interaction anxiety with a multivariate approach in a comparably large dataset (n = 194, 95 males). All participants completed a structural and a resting-state functional magnetic resonance imaging (fMRI) scan and self-report measures of depression via Beck's Depression Inventory II and social interaction anxiety by social interaction anxiety scale. Voxel-based morphometry (VBM) results first identified grey matter volumes of insula were positively correlated with depression dimension scores. Next, whole brain seed-to-voxel analyses were conducted using a VBM-identified insula as a seed region to examine associations between depression/social anxiety and functional connectivity. The results suggested that a significant positive effect of depression/social anxiety was found on the connectivity between insula and dorsal lateral prefrontal cortex (dlPFC). Moreover, variations in depression meditated the association between insula-dlPFC connectivity and social interaction anxiety. Overall, the results indicate that individual differences in depression relate more to insula-dlPFC coupling compared to social interaction anxiety.
Collapse
Affiliation(s)
- Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of ChinaChengduChina
| | - Xiaolu Zhang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of ChinaChengduChina
| | - Xinqi Zhou
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Xinwei Song
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of ChinaChengduChina
| | - Zhao Zhang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of ChinaChengduChina
| | - Lei Xu
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Feng Zhou
- Faculty of PsychologySouthwest UniversityChongqingChina
- Key Laboratory of Cognition and PersonalityMinistry of EducationChina
| | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
16
|
Li GZ, Liu PH, Zhang AX, Andari E, Zhang KR. A resting state fMRI study of major depressive disorder with and without anxiety. Psychiatry Res 2022; 315:114697. [PMID: 35839636 DOI: 10.1016/j.psychres.2022.114697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The neurobiology of the Major depressive disorder (MDD) with anxiety is still unclear. The present study aimed to explore the brain correlates of MDD with and without anxiety in men and women during resting-state fMRI. METHODS Two hundred and fifty-four patients with MDD (MDD with anxiety, N = 152) and MDD without anxiety, N = 102) and 228 healthy controls (HCs) participated in this study. We compared the fALFF(fractional amplitude of low-frequency fluctuations) and ReHo(regional homogeneity) of ACC(anterior cingulate cortex) and insula among these three groups. We also compared gender difference between MDD with anxiety and MDD without anxiety. RESULTS We found that the fALFF values within the ACC and insula were significantly lower in MDD with anxiety compared to without anxiety and HCs. However, we did not find differences in ReHo values among the three groups. In women, we found significant differences in fALFF values between MDD with and without anxiety. These differences were not observed in men. CONCLUSIONS It is possible that MDD with anxiety show less spontaneous BOLD-fMRI signal intensity within the ACC and insula compared to MDD without anxiety, especially in women. The fALFF within the ACC and insula can be a potential biomarker for severe MDD phenotype.
Collapse
Affiliation(s)
- Gai-Zhi Li
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng-Hong Liu
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ai-Xia Zhang
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Elissar Andari
- Department of Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.
| | - Ke-Rang Zhang
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
17
|
Zhang S, Li H, Xu Q, Wang C, Li X, Sun J, Wang Y, Sun T, Wang Q, Zhang C, Wang J, Jia X, Sun X. Regional homogeneity alterations in multi-frequency bands in tension-type headache: a resting-state fMRI study. J Headache Pain 2021; 22:129. [PMID: 34711175 PMCID: PMC8555254 DOI: 10.1186/s10194-021-01341-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES In this study, we aimed to investigate the spontaneous neural activity in the conventional frequency band (0.01-0.08 Hz) and two sub-frequency bands (slow-4: 0.027-0.073 Hz, and slow-5: 0.01-0.027 Hz) in tension-type headache (TTH) patients with regional homogeneity (ReHo) analyses. METHODS Thirty-eight TTH patients and thirty-eight healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (RS-fMRI) scanning to investigate abnormal spontaneous neural activity using ReHo analysis in conventional frequency band (0.01-0.08 Hz) and two sub-frequency bands (slow-4: 0.027-0.073 Hz and slow-5: 0.01-0.027 Hz). RESULTS In comparison with the HC group, patients with TTH exhibited ReHo increases in the right medial superior frontal gyrus in the conventional frequency band (0.01-0.08 Hz). The between group differences in the slow-5 band (0.01-0.027 Hz) highly resembled the differences in the conventional frequency band (0.01-0.08 Hz); even the voxels with increased ReHo were spatially more extensive, including the right medial superior frontal gyrus and the middle frontal gyrus. In contrast, no region showed significant between-group differences in the slow-4 band (0.027-0.073 Hz). The correlation analyses showed no correlation between the ReHo values in TTH patients and VAS scores, course of disease and number of seizures per month in conventional band (0.01-0.08 Hz), slow-4 band (0.027-0.073 Hz), as well as in slow-5 band (0.01-0.027 Hz). CONCLUSIONS The results showed that the superior frontal gyrus and middle frontal gyrus were involved in the integration and processing of pain signals. In addition, the abnormal spontaneous neural activity in TTH patients was frequency-specific. Namely, slow-5 band (0.01-0.027 Hz) might contain additional useful information in comparison to slow-4 band (0.027-0.073 Hz). This preliminary exploration might provide an objective imaging basis for the understanding of the pathophysiological mechanism of TTH.
Collapse
Affiliation(s)
- Shuxian Zhang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Qinyan Xu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Chao Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yaqi Wang
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong Province, China
| | - Tong Sun
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong Province, China
| | - Qianqian Wang
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Chengcheng Zhang
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, China
| | - Jili Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, China
| | - Xize Jia
- Centre for Cognition and Brain disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Xihe Sun
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
18
|
Serra-Blasco M, Radua J, Soriano-Mas C, Gómez-Benlloch A, Porta-Casteràs D, Carulla-Roig M, Albajes-Eizagirre A, Arnone D, Klauser P, Canales-Rodríguez EJ, Hilbert K, Wise T, Cheng Y, Kandilarova S, Mataix-Cols D, Vieta E, Via E, Cardoner N. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis. Neurosci Biobehav Rev 2021; 129:269-281. [PMID: 34256069 DOI: 10.1016/j.neubiorev.2021.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
The high comorbidity of Major Depressive Disorder (MDD), Anxiety Disorders (ANX), and Posttraumatic Stress Disorder (PTSD) has hindered the study of their structural neural correlates. The authors analyzed specific and common grey matter volume (GMV) characteristics by comparing them with healthy controls (HC). The meta-analysis of voxel-based morphometry (VBM) studies showed unique GMV diminutions for each disorder (p < 0.05, corrected) and less robust smaller GMV across diagnostics (p < 0.01, uncorrected). Pairwise comparison between the disorders showed GMV differences in MDD versus ANX and in ANX versus PTSD. These results endorse the hypothesis that unique clinical features characterizing MDD, ANX, and PTSD are also reflected by disorder specific GMV correlates.
Collapse
Affiliation(s)
- Maria Serra-Blasco
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain; Department of Psychology, Abat Oliba CEU University, Spain; Programa E-Health ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Carles Soriano-Mas
- Institut d'Investigació Biomèdica De Bellvitge-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma De Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | | | - Daniel Porta-Casteràs
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain
| | - Marta Carulla-Roig
- Psychiatry and Psychology Department, Hospital Sant Joan De Déu, Barcelona, Spain
| | | | - Danilo Arnone
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), United Arab Emirates; Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Department of Psychiatry, Service of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Australia
| | - Eric J Canales-Rodríguez
- FIDMAG Research Foundation, Germanes Hospitalàries, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale De Lausanne (EPFL), Switzerland; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Kevin Hilbert
- Humboldt-Universität Zu Berlin, Department of Psychology, Berlin, Germany
| | - Toby Wise
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London & Division of the Humanities and Social Sciences, California Institute of Technology, Caltech, United States
| | - Yuqui Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute at Medical University of Plovdiv, Bulgaria
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan De Déu, Barcelona, Spain; Child and Adolescent Mental Health Research Group, Institut De Recerca Sant Joan De Déu, Barcelona, Spain.
| | - Narcís Cardoner
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma De Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain.
| |
Collapse
|
19
|
Choi KW, Kwon S, Pyun SB, Tae WS. Shape Deformation in the Brainstem of Medication-Naïve Female Patients with Major Depressive Disorder. Psychiatry Investig 2020; 17:465-474. [PMID: 32403210 PMCID: PMC7265019 DOI: 10.30773/pi.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Although neuroimaging studies have shown volumetric reductions, such as the anterior cingulate, prefrontal cortices, and hippocampus in patients with major depressive disorder (MDD), few studies have investigated the volume of or shape alterations in the subcortical regions and the brainstem. We hypothesized that medication-naïve female adult patients with MDD might present with shape and volume alterations in the subcortical regions, including the brainstem, compared to healthy controls (HCs). METHODS A total of 20 medication-naïve female patients with MDD and 21 age-matched female HCs, underwent 3D T1-weighted structural magnetic resonance scanning. We analyzed the volumes of each subcortical region and each brainstem region, including the midbrain, pons, and medulla oblongata. We also performed surface-based vertex analyses on the subcortical areas and brainstem. RESULTS Female patients with MDD showed non-significant volumetric differences in the subcortical regions, whole brainstem, and each brainstem region compared to the HCs. However, in the surface-based vertex analyses, significant shape contractions were observed in both cerebellar peduncles located on the lateral wall of the posterior brainstem [threshold-free cluster enhancement, corrected for family-wise error (FWE) at p<0.05] in patients with MDD. CONCLUSION We revealed shape alterations in the posterior brainstem in female patients with MDD.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soonwook Kwon
- Department of Anatomy, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Majrashi NA, Ahearn TS, Waiter GD. Brainstem volume mediates seasonal variation in depressive symptoms: A cross sectional study in the UK Biobank cohort. Sci Rep 2020; 10:3592. [PMID: 32108162 PMCID: PMC7046735 DOI: 10.1038/s41598-020-60620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/10/2020] [Indexed: 11/18/2022] Open
Abstract
Seasonal differences in mood and depressive symptoms affect a large percentage of the general population, with seasonal affective disorder (SAD) representing the most common presentation. SAD affects up to 3% of the world’s population, and it tends to be more predominant in females than males. The brainstem has been shown to be affected by photoperiodic changes, and that longer photoperiods are associated with higher neuronal density and decreased depressive-like behaviours. We predict that longer photoperiod days are associated with larger brainstem volumes and lower depressive scores, and that brainstem volume mediates the seasonality of depressive symptoms. Participants (N = 9289, 51.8% females and 48.1% males) ranging in age from 44 to 79 years were scanned by MRI at a single location. Photoperiod was found to be negatively correlated with low mood and anhedonia in females while photoperiod was found to be positively correlated with brainstem volumes. In females, whole brainstem, pons and medulla volumes individually mediated the relationship between photoperiod and both anhedonia and low mood, while midbrain volume mediated the relationship between photoperiod and anhedonia. No mediation effects were seen in males. Our study extends the understanding of the neurobiological factors that contribute to the pathophysiology of seasonal mood variations.
Collapse
Affiliation(s)
- Naif A Majrashi
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.,Diagnostic Radiology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Trevor S Ahearn
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.,Medical Physics, NHS Grampian, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
21
|
Wu Z, Luo Q, Wu H, Wu Z, Zheng Y, Yang Y, He J, Ding Y, Yu R, Peng H. Amplitude of Low-Frequency Oscillations in Major Depressive Disorder With Childhood Trauma. Front Psychiatry 2020; 11:596337. [PMID: 33551867 PMCID: PMC7862335 DOI: 10.3389/fpsyt.2020.596337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Major Depressive Disorder (MDD) with childhood trauma is one of the functional subtypes of depression. Frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) have been reported in MDD patients. However, there are few studies on ALFF about MDD with childhood trauma. Resting-state functional magnetic resonance imaging was used to measure the ALFF in 69 MDD patients with childhood trauma (28.7 ± 9.6 years) and 30 healthy subjects (28.12 ± 4.41 years). Two frequency bands (slow-5: 0.010-0.027 Hz; slow-4: 0.027-0.073 Hz) were analyzed. Compared with controls, the MDD with childhood trauma had decreased ALFF in left S1 (Primary somatosensory cortex), and increased ALFF in left insula. More importantly, significant group × frequency interactions were found in right dorsal anterior cingulate cortex (dACC). Our finding may provide insights into the pathophysiology of MDD with childhood trauma.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawang Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Yang
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfei He
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Ding
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Laird KT, Siddarth P, Krause B, Kilpatrick L, Milillo M, Aguilar Y, Narr KL, Lavretsky H. Anxiety symptoms are associated with smaller insular and orbitofrontal cortex volumes in late-life depression. J Affect Disord 2019; 256:282-287. [PMID: 31200165 PMCID: PMC6750975 DOI: 10.1016/j.jad.2019.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Increasing understanding of the neural correlates of anxiety symptoms in late-life depression (LLD) could inform the development of more targeted and effective treatments. METHODS Grey matter volume (GMV) was assessed with volumetric magnetic resonance imaging in a sample of 113 adults ≥60 years with MDD using the following regions of interest: amygdala, anterior cingulate cortex (ACC), insula, orbitofrontal cortex (OFC), and temporal cortex. RESULTS After controlling for demographic (age, sex, education) and clinical variables (antidepressant use, anxiolytic use, duration of illness, medical comorbidity, cognitive functioning), greater severity of anxiety symptoms was associated with lower GMV bilaterally in the insula, F(1,102) = 6.63, p = 0.01, and OFC, F(1,102) = 8.35, p = 0.005. By contrast, depressive symptom severity was significantly associated with lower bilateral insula volumes, F(1,102) = 6.43, p = 0.01, but not OFC volumes, F(1,102) = 5.37, p = 0.02. LIMITATIONS Limitations include (1) the relatively mild nature of anxiety symptoms in our sample; (2) the cross-sectional research design, which prohibits inferences of directionality; (3) the relatively homogenous demographic of the sample, and (4) the exclusion of participants with significant psychiatric comorbidity, suicidality, or cognitive impairment. CONCLUSIONS Decreased OFC volumes may serve as a unique biomarker of anxiety symptoms in LLD. Future longitudinal and clinical studies with long-term follow up and more diverse samples will help further elucidate the biological, psychological, and social factors affecting associations between anxiety and brain morphology in LLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helen Lavretsky
- Department of Psychology and Human Development, University of California, Los Angeles (UCLA), 760 Westwood Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
23
|
Peng W, Jia Z, Huang X, Lui S, Kuang W, Sweeney JA, Gong Q. Brain structural abnormalities in emotional regulation and sensory processing regions associated with anxious depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109676. [PMID: 31226395 DOI: 10.1016/j.pnpbp.2019.109676] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Considerable patients with major depressive disorder (MDD) comorbid with anxious symptoms, referred as anxious depression. The neural structural basis of this MDD specifier remains largely unknown. METHODS 104 patients with anxious depression, 57 MDD patients without significant anxious symptoms, and 160 healthy controls from single research center participated in the study with age and sex well-matched. We investigated gray matter alterations in anxious and non-anxious depression, explored different brain alterations between these two patient groups, and possible relationships between brain structural parameter and clinical information in patients. RESULTS Gray matter volumes differed in the right inferior frontal gyrus, right orbital frontal gyrus, left postcentral gyrus, bilateral culmen and left cuneus among the three groups. Anxious depression had smaller gray matter volumes in the right inferior frontal gyrus and orbital frontal gyrus relative to both non-anxious depression and healthy controls. Patients with anxious depression presented larger gray matter volumes in the left postcentral gyrus than non-anxious depression, and larger gray matter volumes in the left cuneus than healthy controls. In addition, both patient groups showed larger gray matter volumes in bilateral culmen relative to healthy controls. Gray matter volumes in the left postcentral gyrus were positively associated with overall depression severity and anxiety factor scores in anxious depression. CONCLUSION Our study revealed brain structural abnormalities in emotional regulation and sensory processing regions of anxious depression, which may suggested distinct neurobiological mechanisms of this MDD specifier and could help explain different clinical manifestations in anxious depression from pure depression.
Collapse
Affiliation(s)
- Wei Peng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, People's Hospital of Deyang City, Deyang, PR China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Profound and reproducible patterns of reduced regional gray matter characterize major depressive disorder. Transl Psychiatry 2019; 9:176. [PMID: 31341158 PMCID: PMC6656728 DOI: 10.1038/s41398-019-0512-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022] Open
Abstract
Reduced gray matter (GM) volume may represent a hallmark of major depressive disorder (MDD) neuropathology, typified by wide-ranging distribution of structural alteration. In the study, we aimed to replicate and extend our previous finding of profound and widespread GM loss in MDD, and evaluate the diagnostic accuracy of a structural biomarker derived from GM volume in an interconnected pattern across the brain. In a sub-study of the International Study to Predict Optimized Treatment in Depression (iSPOT-D), two cohorts of clinically defined MDD participants "Test" (n = 98) and "Replication" (n = 131) were assessed alongside healthy controls (n = 66). Using 3T MRI T1-weighted volumes, GM volume differences were evaluated using voxel-based morphometry. Sensitivity, specificity, and area under the receiver operating characteristic curve were used to evaluate an MDD diagnostic biomarker based on a precise spatial pattern of GM loss constructed using principal component analysis. We demonstrated a highly conserved symmetric widespread pattern of reduced GM volume in MDD, replicating our previous findings. Three bilateral dominant clusters were observed: Cluster 1: midline/cingulate (GM reduction: Test: 6.4%, Replication: 5.3%), Cluster 2: medial temporal lobe (GM reduction: Test: 8.2%, Replication: 11.9%), Cluster 3: prefrontal cortex (GM reduction: Test: 12.1%, Replication: 23.2%). We developed a biomarker reflecting the global pattern of GM reduction, achieving good diagnostic classification performance (AUC: Test = 0.75, Replication = 0.84). This study establishes that a highly specific pattern of reduced GM volume is a feature of MDD, suggestive of a structural basis for this disease. We introduce and validate a novel diagnostic biomarker based on this pattern.
Collapse
|
25
|
Kropf E, Syan SK, Minuzzi L, Frey BN. From anatomy to function: the role of the somatosensory cortex in emotional regulation. ACTA ACUST UNITED AC 2018; 41:261-269. [PMID: 30540029 PMCID: PMC6794131 DOI: 10.1590/1516-4446-2018-0183] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
Abstract
Since the pioneering work of Penfield and his colleagues in the 1930s, the somatosensory cortex, which is located on the postcentral gyrus, has been known for its central role in processing sensory information from various parts of the body. More recently, a converging body of literature has shown that the somatosensory cortex also plays an important role in each stage of emotional processing, including identification of emotional significance in a stimulus, generation of emotional states, and regulation of emotion. Importantly, studies conducted in individuals suffering from mental disorders associated with abnormal emotional regulation, such as major depression, bipolar disorder, schizophrenia, post-traumatic stress disorder, anxiety and panic disorders, specific phobia, obesity, and obsessive-compulsive disorder, have found structural and functional changes in the somatosensory cortex. Common observations in the somatosensory cortices of individuals with mood disorders include alterations in gray matter volume, cortical thickness, abnormal functional connectivity with other brain regions, and changes in metabolic rates. These findings support the hypothesis that the somatosensory cortex may be a treatment target for certain mental disorders. In this review, we discuss the anatomy, connectivity, and functions of the somatosensory cortex, with a focus on its role in emotional regulation.
Collapse
Affiliation(s)
- Erika Kropf
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| | - Sabrina K Syan
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| | - Luciano Minuzzi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Canada
| | - Benicio N Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Canada
| |
Collapse
|
26
|
Minuzzi L, Syan SK, Smith M, Hall A, Hall GB, Frey BN. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder. Aust N Z J Psychiatry 2018; 52:1075-1083. [PMID: 29232965 DOI: 10.1177/0004867417746001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. METHODS In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. RESULTS We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. CONCLUSION This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Luciano Minuzzi
- 1 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,3 Mood Disorders Program, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Sabrina K Syan
- 2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Mara Smith
- 1 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- 4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey Bc Hall
- 2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,5 Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- 1 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,3 Mood Disorders Program, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
27
|
Patients with anxious depression: overview of prevalence, pathophysiology and impact on course and treatment outcome. Curr Opin Psychiatry 2018; 31:17-25. [PMID: 29120914 DOI: 10.1097/yco.0000000000000376] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Major depressive disorder with a comorbid anxiety disorder or with significant anxiety symptoms (here called anxious depression) is common and has been associated with poor clinical course trajectories. However, various dichotomous as well as dimensional definitions have been used to label anxious depression and it remains unclear to which extent these result in inconsistent findings. This review provides an overview of recent literature on the impact of anxiety in depressed patients on clinical course trajectories, treatment outcomes, and underlying neurobiological dysregulations. RECENT FINDINGS Anxious depression seems associated with poorer clinical course trajectories and treatment nonresponse as compared with 'pure' depression, regardless of which definition is used. Recent studies have attempted to determine specific efficacy of novel pharmacological treatments for anxious depressed patients, but have not been conclusive because of the insufficient number of studies and differences in definitions and assessment of anxious depression. Neurobiology studies suggest that anxious depression is associated with increased immune dysregulation, more cortical thinning, and corticolimbic dysfunctions as compared with 'pure' depression. SUMMARY Anxious depression appears to be a common and clinically relevant subtype of depression as it predicts poorer course trajectories. As populations with anxious depression may benefit from specific treatment regimens, further research is necessary to better delineate its definition and neurobiology. The relatively new Diagnostic and Statistical Manual of Mental Disorders-5 anxious distress specifier is a welcome development and should be further investigated and compared against other anxiety constructs.
Collapse
|
28
|
A spectroscopic approach toward depression diagnosis: local metabolism meets functional connectivity. Eur Arch Psychiatry Clin Neurosci 2017; 267:95-105. [PMID: 27561792 DOI: 10.1007/s00406-016-0726-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
Abnormal anterior insula (AI) response and functional connectivity (FC) is associated with depression. In addition to clinical features, such as severity, AI FC and its metabolism further predicted therapeutic response. Abnormal FC between anterior cingulate and AI covaried with reduced glutamate level within cingulate cortex. Recently, deficient glial glutamate conversion was found in AI in major depression disorder (MDD). We therefore postulate a local glutamatergic mechanism in insula cortex of depressive patients, which is correlated with symptoms severity and itself influences AI's network connectivity in MDD. Twenty-five MDD patients and 25 healthy controls (HC) matched on age and sex underwent resting state functional magnetic resonance imaging and magnetic resonance spectroscopy scans. To determine the role of local glutamate-glutamine complex (Glx) ratio on whole brain AI FC, we conducted regression analysis with Glx relative to creatine (Cr) ratio as factor of interest and age, sex, and voxel tissue composition as nuisance factors. We found that in MDD, but not in HC, AI Glx/Cr ratio correlated positively with AI FC to right supramarginal gyrus and negatively with AI FC toward left occipital cortex (p < 0.05 family wise error). AI Glx/Cr level was negatively correlated with HAMD score (p < 0.05) in MDD patients. We showed that the local AI ratio of glutamatergic-creatine metabolism is an underlying candidate subserving functional network disintegration of insula toward low level and supramodal integration areas, in MDD. While causality cannot directly be inferred from such correlation, our finding helps to define a multilevel network of response-predicting regions based on local metabolism and connectivity strength.
Collapse
|
29
|
Han KM, Kim D, Sim Y, Kang J, Kim A, Won E, Tae WS, Ham BJ. Alterations in the brainstem volume of patients with major depressive disorder and their relationship with antidepressant treatment. J Affect Disord 2017; 208:68-75. [PMID: 27750062 DOI: 10.1016/j.jad.2016.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/27/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Morphologic changes of the brainstem in major depressive disorder (MDD) have rarely been reported in neuroimaging studies, even though, monoaminergic neurotransmitters are synthesized in several brainstem regions. We aimed to investigate volume changes in each region of the brainstem and their association with antidepressant use or the remission status of MDD. METHODS A total of 126 patients with MDD and 101 healthy controls underwent T1-weighted structural magnetic resonance imaging. We analyzed volumes of each brainstem region, including the medulla oblongata, pons, midbrain, and superior cerebellar peduncle, and the volume of the whole brainstem using the FreeSurfer. RESULTS The patients with MDD had significantly greater midbrain volumes (P=0.013) compared to healthy controls. In particular, drug-naïve patients with MDD had significantly greater brainstem volumes compared to healthy controls (P=0.007), while no significant findings were observed between the antidepressant treatment group and healthy controls. The remitted patient group had reduced pons (P=0.002) and midbrain (P=0.005) volumes compared to healthy controls, while the non-remitted MDD patient group had significantly greater midbrain volumes compared to the healthy controls (P=0.017). LIMITATIONS We could not distinguish gray versus white matter volumes changes in our analysis. CONCLUSIONS We observed that the midbrain is enlarged in patients with a current depressive episode, who are not undergoing antidepressant treatment. This volume then returns to normal after antidepressant treatment, and is even reduced, when the patient is in remission. Further studies are needed to confirm our observations.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daseul Kim
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngbo Sim
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea; Geriatric Health Clinic and Research Institute, Korea University, College of Medicine, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, Li C, Wu L, Zhong X, Zhou Y, Fan N, Zheng Y, Xiong D, Peng H, Escudero J, Huang B, Li X, Ning Y, Wu K. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 2016; 95:e3973. [PMID: 27472673 PMCID: PMC5265810 DOI: 10.1097/md.0000000000003973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.
Collapse
Affiliation(s)
- Xiaobing Lu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Yongzhe Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Minjian Gao
- School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yong Xu
- School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yue Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yongcheng Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Xin Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Chengwei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Lei Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Xiaomei Zhong
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Yanling Zhou
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Ni Fan
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Yingjun Zheng
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, Guangzhou Brain Hospital (GBH)/ (Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Javier Escudero
- Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Biao Huang
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, US
- Department of Electric and Computer Engineering, New Jersey Institute of Technology, NJ, US
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, US
| | - Yuping Ning
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
31
|
Molecular, Functional, and Structural Imaging of Major Depressive Disorder. Neurosci Bull 2016; 32:273-85. [PMID: 27142698 DOI: 10.1007/s12264-016-0030-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) is a significant cause of morbidity and mortality worldwide, correlating with genetic susceptibility and environmental risk factors. Molecular, functional, and structural imaging approaches have been increasingly used to detect neurobiological changes, analyze neurochemical correlates, and parse pathophysiological mechanisms underlying MDD. We reviewed recent neuroimaging publications on MDD in terms of molecular, functional, and structural alterations as detected mainly by magnetic resonance imaging (MRI) and positron emission tomography. Altered structure and function of brain regions involved in the cognitive control of affective state have been demonstrated. An abnormal default mode network, as revealed by resting-state functional MRI, is likely associated with aberrant metabolic and serotonergic function revealed by radionuclide imaging. Further multi-modal investigations are essential to clarify the characteristics of the cortical network and serotonergic system associated with behavioral and genetic variations in MDD.
Collapse
|
32
|
Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, Xiao C, Zhao J. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore) 2015; 94:e560. [PMID: 25738471 PMCID: PMC4553960 DOI: 10.1097/md.0000000000000560] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The default-mode network (DMN) has been implicated in the neurobiology of major depressive disorder (MDD), and the cerebellum is suggested to be involved in high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN alterations remains equivocal. This study was conducted to examine the cerebellar-DMN connectivity in drug-naive MDD directly by using the cerebellum Crus I as seeds.Forty-four drug-naive MDD patients and 44 healthy controls participated in the resting-state scan. Functional connectivity (FC) was applied to analyze the images.Significantly increased FCs were observed between the right Crus I and the right inferior frontal cortex (orbital part)/superior temporal pole, bilateral MPFC (orbital part), and left middle temporal gyrus in the patients compared with the controls. There was a significantly positive correlation between the z values of the right Crus I-bilateral MPFC (orbital part) connectivity and the scores of Automatic Thoughts Questionnaire in the patients (r = 0.329, P = 0.029).The findings reveal that depressed patients have increased cerebellar-DMN connectivity with clinical significance, and thus highlight the contribution of the cerebellum to the DMN alterations in neurobiology of MDD.
Collapse
Affiliation(s)
- Wenbin Guo
- From the Mental Health Center (GW, LJ, YM, ZZ, LG, XC), the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi; Key Laboratory for NeuroInformation of Ministry of Education (LF), School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan; and Mental Health Institute of the Second Xiangya Hospital (ZJ), Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|