1
|
Kurhaluk N, Tkachenko H. Effects of melatonin and metformin in preventing lysosome-induced autophagy and oxidative stress in rat models of carcinogenesis and the impact of high-fat diet. Sci Rep 2022; 12:4998. [PMID: 35322049 PMCID: PMC8943031 DOI: 10.1038/s41598-022-08778-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Imbalanced glucose tolerance and insulin resistance remain important as high cancer risk factors. Metformin administration to diabetic patients may be associated with a reduced risk of malignancy. The combined effects of the hormone melatonin and metformin in oncology practice have shown positive results. The relevance of our study is to find out the role of specific biomarkers of lysosome destruction and oxidative stress data in carcinogenesis models. The present study was designed to investigate the comparative synergic effect of peroral antidiabetic metformin (MF) and pineal hormone melatonin (MEL) administered alone and in combination in two different rat’s models of mammary tumour proliferation in vivo (N-methyl-N-nitrosourea, NMU or 7,12-dimethylbenz[a]anthracene, DMBA). We have studied the processes of lysosomal destruction (alanyl aminopeptidase AAP, leucyl aminopeptidase LAP, acid phosphatase AcP, β-N-acetylglucosaminidase NAG, β-galactosidase β-GD and β-glucuronidase β-GR) caused by evaluated oxidative stress in three types of tissues (liver, heart, and spleen) in female Sprague–Dawley rats fed a high-fat diet (10% of total fat: 2.5% from lard and 7.5% from palm olein). Our results revealed an increase in the activity of the studied lysosomal enzymes and their expression in a tissue-specific manner depending on the type of chemical agent (NMU or DMBA). MANOVA tests in our study confirmed the influence of the three main factors, type of tissue, chemical impact, and chemopreventive agents, and the combinations of these factors on the lysosomal activity induced during the process of cancerogenesis. The development and induction of the carcinogenesis process in the different rat models with the high-fat diet impact were also accompanied by initiation of free-radical oxidation processes, which we studied at the initial (estimated by the level of diene conjugates) and final (TBARS products) stages of this process. The combined effects of MEL and MF for the two models of carcinogenesis at high-fat diet impact for AAP, LAP, and AcP showed a significant synergistic effect when they impact together when compared with the effects of one substance alone (either MEL or MF) in the breast cancer model experiments. Synergistic effects of limiting destructive processes of lysosomal functioning β-GD enzyme activity we obtained in experiments with MEL and MF chemoprevention for both models of carcinogenesis for three tissues. The statistical SS test allowed us to draw the following conclusions on the role of each lysosomal parameter analyzed as an integral model: NAG > AcP > β-GD > β-GR > AAP > LAP.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str., 22b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str., 22b, 76-200, Słupsk, Poland
| |
Collapse
|
2
|
Magenta A, Lorde R, Syed SB, Capogrossi MC, Puca A, Madeddu P. Molecular therapies delaying cardiovascular aging: disease- or health-oriented approaches. VASCULAR BIOLOGY 2020; 2:R45-R58. [PMID: 32923974 PMCID: PMC7439942 DOI: 10.1530/vb-19-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is a new therapeutic modality that aims to mend tissue damage by encouraging the reconstitution of physiological integrity. It represents an advancement over conventional therapies that allow reducing the damage but result in disease chronicization. Age-related decline in spontaneous capacity of repair, especially in organs like the heart that have very limited proliferative capacity, contributes in reducing the benefit of conventional therapy. ncRNAs are emerging as key epigenetic regulators of cardiovascular regeneration. Inhibition or replacement of miRNAs may offer reparative solutions to cardiovascular disease. The first part of this review article is devoted to illustrating novel therapies emerging from research on miRNAs. In the second part, we develop new therapeutic concepts emerging from genetics of longevity. Prolonged survival, as in supercentenarians, denotes an exceptional capacity to repair and cope with risk factors and diseases. These characteristics are shared with offspring, suggesting that the regenerative phenotype is heritable. New evidence indicates that genetic traits responsible for prolongation of health span in humans can be passed to and benefit the outcomes of animal models of cardiovascular disease. Genetic studies have also focused on determinants of accelerated senescence and related druggable targets. Evolutionary genetics assessing the genetic basis of adaptation and comparing successful and unsuccessful genetic changes in response to selection within populations represent a powerful basis to develop novel therapies aiming to prolong cardiovascular and whole organism health.
Collapse
Affiliation(s)
| | - Reggio Lorde
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Sunayana Begum Syed
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Annibale Puca
- Ageing Unit, IRCCS MultiMedica, Milan, Italy.,Department of Medicine, Surgery and Dentistry, 'Scuola Medica Salernitana' University of Salerno, Baronissi, Italy
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Chou HL, Chao TY, Chen TC, Chu CM, Hsieh CH, Lin LI, Yao CT. Chemotherapy agents induce tartrate-resistant acid phosphatase 5a contributing to the symptom distress in lung cancer patients. Eur J Pharmacol 2019; 846:38-48. [PMID: 30658113 DOI: 10.1016/j.ejphar.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/20/2022]
Abstract
Tartrate-resistant acid phosphatase 5a (TRACP5a) is mainly secreted by activated macrophages in chronic inflammation. Serum TRACP5a is associated with symptom distress in lung cancer patients during chemotherapy. Therefore, this study aimed to investigate whether chemotherapy drugs modulate TRACP5a as an inducible marker for symptom distress in lung cancer patients during chemotherapy. In clinical analysis, lung cancer participants completely received the six-cycle chemotherapy process (n = 42). Clinical determinations for TRACP5a, C-reactive protein (CRP), interleukin-6 (IL-6), white blood cells, monocytes, and hemoglobin were analyzed at six time points: BL, C1d8, C2d1, C4d1, C4d8, and Ed28. Meanwhile, five questionnaires for fatigue, sleep disturbance, pain, depression, and confusion were finished before drug treatment. For monocyte-to-macrophage differentiation, THP-1 cells were treated with phorbol 12-myristate 13-acetate (PMA). TRACP5a secretion in THP-1 cells was determined at the following days up to 6 days after 1-day incubation of chemotherapy drugs by dot blotting. Clinical analysis revealed that TRACP5a significantly increased at C1d8 and C4d8, but dropped at C2d1 and Ed28. CRP and IL-6 displayed a broad-range variation, resulting in no significant difference among the assessment time points. In contrast, monocytes decreased at C1d8 and C4d8, but rose again at C2d1 and Ed28. In symptom distress, the changes only in fatigue and sleep disturbance were positively associated with the trend in TRACP5a. In PMA-treated THP-1 cells, TRACP5a significantly increased after stimulation with gemcitabine and paclitaxel. Taken together, induction of TRACP5a by chemotherapy drugs might be generated from monocyte-differentiated macrophages, further causing clinical symptom distress in lung cancer patients.
Collapse
Affiliation(s)
- Hsiu-Ling Chou
- Department of Nursing, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan; School of Nursing, National Yang-Ming University, Taipei, Taiwan
| | - Tsu-Yi Chao
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University-Shuang Ho Hospital; Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chi-Ming Chu
- Division of Biomedical Statistics and Informatics, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Hsi Hsieh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Faculty of Medicine, Institute of Tradiational Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Tay Yao
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan; Department of Emergency, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
4
|
Huang Y, Wang L, Mao Y, Nan G. Long Noncoding RNA-H19 Contributes to Atherosclerosis and Induces Ischemic Stroke via the Upregulation of Acid Phosphatase 5. Front Neurol 2019; 10:32. [PMID: 30778327 PMCID: PMC6369351 DOI: 10.3389/fneur.2019.00032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: Atherosclerosis is closely associated with ischemic stroke, and long noncoding RNA-H19 (lncRNA-H19) might be a potential target for treating atherosclerosis. The present study aimed to investigate the function of lncRNA-H19 in atherosclerosis and to explore a novel therapeutic strategy for ischemic stroke. Methods: Differentially expressed genes (DEGs) in atherosclerosis were screened by searching public database. In combination with the lncRNA-H19-knockout database, potential lncRNA-H19-mediated gene was retrieved and their relationship was identified. In order to assess the detailed regulatory mechanism of lncRNA-H19, we used a lentivirus packaging system to upregulate Acp5 (Acid phosphatase 5) expression in vascular smooth muscle cells (VSMC) and human umbilical vein endothelial cells (HUVECs). The expression of ACP5 was determined by Western Blot, and evaluations of cell proliferation and apoptosis were detected. An ischemic stroke mouse model was established. Atherosclerosis was measured by using plaque area size. The effects H19 on the expression of ACP5 were explored by the overexpression or silence of H19. Results: H19 and ACP5 were associated with Acute Stroke Treatment (TOAST) subtypes of atherosclerotic patients. The target prediction program and dual-luciferase reporter confirmed ACP5 as a direct target of H19. Lentivirus-mediated H19-forced expression upregulated ACP5 protein levels, promoted cell proliferation and suppressed the apoptosis. The plaque area size was larger in ischemic models than controls. The overexpression or silence of H19 increased or reduced the plaque size. The overexpression or silence of H19 resulted in the expression or inhibition of ACP5. Conclusion: IncRNA-H19 promoting ACP5 protein expression contributed to atherosclerosis and increased the risk of ischemic stroke.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liping Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Mao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
虞 佳, 汪 静. 抗酒石酸酸性磷酸酶在恶性肿瘤中的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:2133-2138. [DOI: 10.11569/wcjd.v25.i23.2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
抗酒石酸酸性磷酸酶(type 5 acid phosphatase/tartrate-resistant acid phosphatase, ACP5/TRACP/TRAP)是酸性磷酸酶家族中的金属蛋白酶, 是骨吸收和破骨细胞活性的良好标志物. 近来发现ACP5在多种肿瘤中的表达比配对正常组织中的表达显著上调, 该现象提示, ACP5可能肿瘤的发生发展中起到一定的作用.
Collapse
|
6
|
Huang YJ, Huang TW, Chao TY, Sun YS, Chen SJ, Chu DM, Chen WL, Wu LW. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome. Oncotarget 2017; 8:78144-78152. [PMID: 29100456 PMCID: PMC5652845 DOI: 10.18632/oncotarget.17839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Background Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. Methods One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Results Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Conclusions Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.
Collapse
Affiliation(s)
- Yi-Jhih Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| | - Tsu-Yi Chao
- Division of Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C).,Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China (R.O.C)
| | - Yu-Shan Sun
- Division of Family Medicine, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| | - Der-Ming Chu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China (R.O.C).,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China (R.O.C).,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| | - Li-Wei Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China (R.O.C).,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China (R.O.C).,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China (R.O.C)
| |
Collapse
|