1
|
O'Sullivan NJ, Kelly ME. Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions. Curr Oncol 2023; 30:4936-4945. [PMID: 37232830 DOI: 10.3390/curroncol30050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Radiomics refers to the conversion of medical imaging into high-throughput, quantifiable data in order to analyse disease patterns, guide prognosis and aid decision making. Radiogenomics is an extension of radiomics that combines conventional radiomics techniques with molecular analysis in the form of genomic and transcriptomic data, serving as an alternative to costly, labour-intensive genetic testing. Data on radiomics and radiogenomics in the field of pelvic oncology remain novel concepts in the literature. We aim to perform an up-to-date analysis of current applications of radiomics and radiogenomics in the field of pelvic oncology, particularly focusing on the prediction of survival, recurrence and treatment response. Several studies have applied these concepts to colorectal, urological, gynaecological and sarcomatous diseases, with individual efficacy yet poor reproducibility. This article highlights the current applications of radiomics and radiogenomics in pelvic oncology, as well as the current limitations and future directions. Despite a rapid increase in publications investigating the use of radiomics and radiogenomics in pelvic oncology, the current evidence is limited by poor reproducibility and small datasets. In the era of personalised medicine, this novel field of research has significant potential, particularly for predicting prognosis and guiding therapeutic decisions. Future research may provide fundamental data on how we treat this cohort of patients, with the aim of reducing the exposure of high-risk patients to highly morbid procedures.
Collapse
Affiliation(s)
- Niall J O'Sullivan
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Michael E Kelly
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
2
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
3
|
Lee SS, Choi SJ, Park JS. Correlations among KRAS Mutation, Microsatellite Instability, and 18F-FDG Uptake in Colon Cancer. Asian Pac J Cancer Prev 2022; 23:3501-3506. [PMID: 36308376 PMCID: PMC9924332 DOI: 10.31557/apjcp.2022.23.10.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the correlation of the maximum standardized uptake value (SUVmax) with the Kirsten ras sarcoma viral oncogene (KRAS) mutation and microsatellite instability (MSI) status in colon cancer. METHODS This retrospective study included 195 patients with colon cancer who underwent 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET/CT) before surgery between January 2014 and December 2017. All patients underwent KRAS mutation and MSI analyses using surgical specimens of the primary tumor. The associations of SUVmax with KRAS mutation and MSI were analyzed. RESULTS The SUVmax differed significantly between the microsatellite stable (MSS) and MSI groups (14.5 ± 7.0 vs. 19.1 ± 10.9; P = 0.0249), and between the KRAS wild-type and KRAS mutation groups (14.1 ± 7.6 vs. 17.5 ± 7.9; P = 0.0017). CONCLUSIONS SUVmax obtained using 18F-FDG PET/CT showed significant differences in relation to KRAS mutation and MSI status. 18F-FDG PET/CT could be used as a supplemental modality for assessing KRAS mutations and MSI status in colon cancer.
Collapse
|
4
|
Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data. J Pers Med 2022; 12:jpm12020128. [PMID: 35207616 PMCID: PMC8880341 DOI: 10.3390/jpm12020128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumours and one of the major causes of morbidity and mortality globally. Its incidence has increased in recent years and could be linked to unhealthy dietary habits combined with environmental and hereditary factors, which can lead to genetic and epigenetic changes and induce tumour development. The model of CRC progression has always been based on a genomic, parametric, static and complex approach involving oncogenes and tumour suppressor genes. Recent advances in omics sciences have sought a paradigm shift to a multiparametric, immunological-stromal, and dynamic approach for a better understanding of carcinogenesis and tumour heterogeneity. In the present paper, we review the most important preclinical and clinical data and present recent discoveries in the field of transcriptomics, proteomics, metagenomics and radiomics in CRC disease.
Collapse
|
5
|
Yin YX, Xie MZ, Liang XQ, Ye ML, Li JL, Hu BL. Clinical Significance and Prognostic Value of the Maximum Standardized Uptake Value of 18F-Flurodeoxyglucose Positron Emission Tomography-Computed Tomography in Colorectal Cancer. Front Oncol 2021; 11:741612. [PMID: 34956868 PMCID: PMC8695495 DOI: 10.3389/fonc.2021.741612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Background The role of 18F-flurodeoxyglucose (18F-FDG) positron emission tomography–computed tomography (PET/CT) in colorectal cancer (CRC) remains unclear. This study aimed to explore the association of the maximum standardized uptake value (SUVmax), a parameter of 18F-FDG PET/CT, with KRAS mutation, the Ki-67 index, and survival in patients with CRC. Methods Data of 66 patients with CRC who underwent 18F-FDG PET/CT was retrospectively collected in our center. The clinical significance of the SUVmax in CRC and the association of the SUVmax with KRAS mutation and the Ki-67 index were determined. A meta-analysis was conducted by a systematic search of PubMed, Web of Science, and CNKI databases, and the data from published articles were combined with that of our study. The association of the SUVmax with KRAS mutation and the Ki-67 index was determined using the odds ratio to estimate the pooled results. The hazard ratio was used to quantitatively evaluate the prognosis of the SUVmax in CRC. Results By analyzing the data of 66 patients with CRC, the SUVmax was found not to be related to the tumor-node-metastasis stage, clinical stage, sex, and KRAS mutation but was related to the tumor location and nerve invasion. The SUVmax had no significant correlation with the tumor biomarkers and the Ki-67 index. Data of 17 studies indicated that the SUVmax was significantly increased in the mutated type compared with the wild type of KRAS in CRC; four studies showed that there was no remarkable difference between patients with a high and low Ki-67 index score regarding the SUVmax. Twelve studies revealed that the SUVmax had no significant association with overall survival and disease-free survival in CRC patients. Conclusions Based on the combined data, this study demonstrated that the SUVmax of 18F-FDG PET/CT was different between colon and rectal cancers and associated with KRAS mutation but not the Ki-67 index; there was no significant association between the SUVmax and survival of patients with CRC.
Collapse
Affiliation(s)
- Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ming-Zhi Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xin-Qiang Liang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meng-Ling Ye
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ji-Lin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
6
|
Lee JH, Lee HS, Kim S, Park EJ, Baik SH, Jeon TJ, Lee KY, Ryu YH, Kang J. Prognostic significance of bone marrow and spleen 18F-FDG uptake in patients with colorectal cancer. Sci Rep 2021; 11:12137. [PMID: 34108552 PMCID: PMC8190120 DOI: 10.1038/s41598-021-91608-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/28/2021] [Indexed: 11/12/2022] Open
Abstract
Serum inflammatory markers are used in the prognostication of colorectal cancer (CRC); however, the corresponding role of positron emission tomography (PET)-derived inflammatory markers remains unclear. This study aimed to investigate the prognostic value of 18F-fluorodeoxyglucose (FDG) uptake in the bone marrow and spleen of patients with CRC and evaluate the relationship between FDG uptake estimates in these organs and serum inflammatory markers. In total, 411 patients who underwent preoperative FDG PET/computed tomography (CT) within 1 month of surgery were enrolled. The mean standardized uptake values of the bone marrow and spleen were normalized to the value of the liver, thereby generating bone marrow-to-liver uptake ratio (BLR) and spleen-to-liver uptake ratio (SLR) estimates. The value of BLR and SLR in predicting overall survival (OS) was assessed using the Cox proportional hazards model. The correlation between BLR or SLR and neutrophil-to-lymphocyte ratio (NLR) was evaluated. The predictive accuracy of BLR alone and in combination with SLR was compared using the integrated area under the receiver operating characteristic curves (iAUC). In the univariate analysis, BLR (> 1.06) and SLR (> 0.93) were significant predictors of OS. In the multivariate analysis, BLR was an independent predictor of OS (hazard ratio = 5.279; p < 0.001). Both BLR and SLR were correlated with NLR (p < 0.001). A combination of BLR and SLR was better than BLR alone at CRC prognostication (iAUC, 0.561 vs. 0.542). FDG uptake estimates in the bone marrow and spleen may be useful imaging-derived biomarkers of systemic inflammation, supporting CRC prognostication.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soyoung Kim
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Seung Hyuk Baik
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Tae Joo Jeon
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeonghyun Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
7
|
Badic B, Tixier F, Cheze Le Rest C, Hatt M, Visvikis D. Radiogenomics in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13050973. [PMID: 33652647 PMCID: PMC7956421 DOI: 10.3390/cancers13050973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal carcinoma is characterized by intratumoral heterogeneity that can be assessed by radiogenomics. Radiomics, high-throughput quantitative data extracted from medical imaging, combined with molecular analysis, through genomic and transcriptomic data, is expected to lead to significant advances in personalized medicine. However, a radiogenomics approach in colorectal cancer is still in its early stages and many problems remain to be solved. Here we review the progress and challenges in this field at its current stage, as well as future developments. Abstract The steady improvement of high-throughput technologies greatly facilitates the implementation of personalized precision medicine. Characterization of tumor heterogeneity through image-derived features—radiomics and genetic profile modifications—genomics, is a rapidly evolving field known as radiogenomics. Various radiogenomics studies have been dedicated to colorectal cancer so far, highlighting the potential of these approaches to enhance clinical decision-making. In this review, a general outline of colorectal radiogenomics literature is provided, discussing the current limitations and suggested further developments.
Collapse
Affiliation(s)
- Bogdan Badic
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
- Correspondence: ; Tel.: +33-298-347-215
| | - Florent Tixier
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
| | - Catherine Cheze Le Rest
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
- Department of Nuclear Medicine, University Hospital of Poitiers, 86021 Poitiers, France
| | - Mathieu Hatt
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
| | - Dimitris Visvikis
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
| |
Collapse
|
8
|
Popovic M, Talarico O, van den Hoff J, Kunin H, Zhang Z, Lafontaine D, Dogan S, Leung J, Kaye E, Czmielewski C, Mayerhoefer ME, Zanzonico P, Yaeger R, Schöder H, Humm JL, Solomon SB, Sofocleous CT, Kirov AS. KRAS mutation effects on the 2-[18F]FDG PET uptake of colorectal adenocarcinoma metastases in the liver. EJNMMI Res 2020; 10:142. [PMID: 33226505 PMCID: PMC7683631 DOI: 10.1186/s13550-020-00707-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Deriving individual tumor genomic characteristics from patient imaging analysis is desirable. We explore the predictive value of 2-[18F]FDG uptake with regard to the KRAS mutational status of colorectal adenocarcinoma liver metastases (CLM). Methods 2-[18F]FDG PET/CT images, surgical pathology and molecular diagnostic reports of 37 patients who underwent PET/CT-guided biopsy of CLM were reviewed under an IRB-approved retrospective research protocol. Sixty CLM in 39 interventional PET scans of the 37 patients were segmented using two different auto-segmentation tools implemented in different commercially available software packages. PET standard uptake values (SUV) were corrected for: (1) partial volume effect (PVE) using cold wall-corrected contrast recovery coefficients derived from phantom spheres with variable diameter and (2) variability of arterial tracer supply and variability of uptake time after injection until start of PET scan derived from the tumor-to-blood standard uptake ratio (SUR) approach. The correlations between the KRAS mutational status and the mean, peak and maximum SUV were investigated using Student’s t test, Wilcoxon rank sum test with continuity correction, logistic regression and receiver operation characteristic (ROC) analysis.
These correlation analyses were also performed for the ratios of the mean, peak and maximum tumor uptake to the mean blood activity concentration at the time of scan: SURMEAN, SURPEAK and SURMAX, respectively. Results Fifteen patients harbored KRAS missense mutations (KRAS+), while another 3 harbored KRAS gene amplification. For 31 lesions, the mutational status was derived from the PET/CT-guided biopsy. The Student’s t test p values for separating KRAS mutant cases decreased after applying PVE correction to all uptake metrics of each lesion and when applying correction for uptake time variability to the SUR metrics. The observed correlations were strongest when both corrections were applied to SURMAX and when the patients harboring gene amplification were grouped with the wild type: p ≤ 0.001; ROC area under the curve = 0.77 and 0.75 for the two different segmentations, respectively, with a mean specificity of 0.69 and sensitivity of 0.85. Conclusion The correlations observed after applying the described corrections show potential for assigning probabilities for the KRAS missense mutation status in CLM using 2-[18F]FDG PET images.
Collapse
Affiliation(s)
- M Popovic
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Cornell University, Ithaca, NY, 14850, USA
| | - O Talarico
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Vassar Brothers Medical Center, Poughkeepsie, NY, 12601, USA.,Lebedev Physical Institute RAS, Moscow, Russia, 119991
| | - J van den Hoff
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - H Kunin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Z Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - D Lafontaine
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - S Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - J Leung
- Technology Division, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E Kaye
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - C Czmielewski
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - M E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - P Zanzonico
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - R Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - H Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - J L Humm
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - S B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - C T Sofocleous
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - A S Kirov
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Park YJ, Shin MH, Moon SH. Radiogenomics Based on PET Imaging. Nucl Med Mol Imaging 2020; 54:128-138. [PMID: 32582396 DOI: 10.1007/s13139-020-00642-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Radiogenomics or imaging genomics is a novel omics strategy of associating imaging data with genetic information, which has the potential to advance personalized medicine. Imaging features extracted from PET or PET/CT enable assessment of in vivo functional and physiological activity and provide comprehensive tumor information non-invasively. However, PET features are considered secondary to features on conventional imaging, and there has not yet been a review of the radiogenomic approach using PET features. This review article summarizes the current state of PET-based radiogenomic research for cancer, which discusses some of its limitations and directions for future study.
Collapse
Affiliation(s)
- Yong-Jin Park
- Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Seoul, Republic of Korea
| | - Mu Heon Shin
- Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Seoul, Republic of Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Clinical significance of tumor-infiltrating lymphocytes and neutrophil-to-lymphocyte ratio in patients with stage III colon cancer who underwent surgery followed by FOLFOX chemotherapy. Sci Rep 2019; 9:11617. [PMID: 31406179 PMCID: PMC6690947 DOI: 10.1038/s41598-019-48140-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/25/2019] [Indexed: 12/26/2022] Open
Abstract
Local tumor immune response and host immunity have been suggested as important prognosticators respectively in colorectal cancer. However, the utility of combination of these parameters remains inconclusive. The aim of this study was to investigate the combinational impact of local and host tumor immune response, as determined by tumor-infiltrating lymphocytes (TILs) and neutrophil-to-lymphocyte ratio (NLR), in patients with stage III colon cancer. Patients with stage III colon cancer homogeneously treated with surgery followed by FOLFOX chemotherapy between Jan 2007 and Aug 2013 were included retrospectively. Hematoxylin and eosin (H&E) stained tumor sections of local inflammatory infiltrate (TILs) were classified as 0–3 by the Klintrup-Mäkinen grading method. NLR was measured within 1 month of surgery. The association of NLR and TILs with survival, alone or combined, were measured using multivariate Cox proportional hazard regression analysis. Among 137 patients, 75 (54.7%) were identified as the high TIL group (TILs 2 and 3) and 97 (70.8%) as the low NLR group (NLR < 3). Of the patients with high TILs, 51 (68%) had a low NLR. In univariate analysis, operation time, complications, lymph node ratio (LNR), stage, TILs, and high TILs with low NLR were significantly associated with overall survival(OS). Multivariate Cox regression identified operation time, stage, and TILs as independent risk factors for OS. When high TILs with low NLR vs. others was entered into multivariate analysis, this also proved to be a significant predictor of OS (HR 4.1, 95% CI 1.1–14.2, P = 0.025), with an increased C-index and lower AIC value compared to TILs. Measuring TILs using H&E stained sections could stratify the prognosis of stage III colon cancer. Considering host immunity, using the combination of TILs and NLR, allowed the prognosis to be stratified in more detail.
Collapse
|
11
|
CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. Eur J Radiol 2019; 118:38-43. [PMID: 31439256 DOI: 10.1016/j.ejrad.2019.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to investigate whether a machine learning-based computed tomography (CT) texture analysis could predict the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) in colorectal cancer. METHOD This retrospective study comprised 40 patients with pathologically confirmed colorectal cancer who underwent KRAS mutation testing, contrast-enhancement CT, and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) before treatment. Of the 40 patients, 20 had mutated KRAS genes, whereas 20 had wild-type KRAS genes. Fourteen CT texture parameters were extracted from portal venous phase CT images of primary tumors, and the maximum standard uptake values (SUVmax) on 18F-FDG PET images were recorded. Univariate logistic regression was used to develop predictive models for each CT texture parameter and SUVmax, and a machine learning method (multivariate support vector machine) was used to develop a comprehensive set of CT texture parameters. The area under the receiver operating characteristic (ROC) curve (AUC) of each model was calculated using five-fold cross validation. In addition, the performance of the machine learning method with the CT texture parameters was compared with that of SUVmax. RESULTS In the univariate analyses, the AUC of each CT texture parameter ranged from 0.4 to 0.7, while the AUC of the SUVmax was 0.58. Comparatively, the multivariate support vector machine with comprehensive CT texture parameters yielded an AUC of 0.82, indicating a superior prediction performance when compared to the SUVmax. CONCLUSIONS A machine learning-based CT texture analysis was superior to the SUVmax for predicting the KRAS mutation status of a colorectal cancer.
Collapse
|
12
|
Mao W, Zhou J, Zhang H, Qiu L, Tan H, Hu Y, Shi H. Relationship between KRAS mutations and dual time point 18F-FDG PET/CT imaging in colorectal liver metastases. Abdom Radiol (NY) 2019; 44:2059-2066. [PMID: 30143816 DOI: 10.1007/s00261-018-1740-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the association between metabolic parameters of dual time point 18F-FDG PET/CT imaging and Kirsten rat sarcoma (KRAS) mutation status in colorectal liver metastases (CRLM). METHODS Forty-nine colorectal cancer patients with 87 liver metastatic lesions were included in this retrospective study. KRAS gene mutation tests were also performed for all the patients. The maximum standardized uptake value (SUVmax) was measured for each hepatic metastatic lesion on both early and delayed scans, and the change of SUVmax (ΔSUVmax) and retention index (RI) were calculated. Uni-variate and multi-variate analyses were employed to determine the relationship between any PET/CT parameters and KRAS mutation status. RESULTS Thirty-seven (42.5%) liver metastatic lesions harboring KRAS mutations were identified. The SUVmax of CRLM with KRAS mutation both on early and delayed scans was significantly higher than those with wild-type KRAS (10.7 ± 6.0 vs. 7.8 ± 3.3, P = 0.002; 15.5 ± 10.1 vs. 10.0 ± 4.2, P < 0.001, respectively). Compared with wild-type KRAS CRLM, ΔSUVmax and RI (%) of CRLM with KRAS mutation were also significantly higher than those with wild-type KRAS (4.8 ± 4.7 vs. 2.2 ± 2.0, P < 0.001; 45.3 ± 28.2 vs. 29.6 ± 24.7, P = 0.003, respectively). Multi-variate analyses showed that the SUVmax on both early and delayed scans, ΔSUVmax, and RI (%) were the 4 independent factors to predict CRLM patients harboring KRAS mutations. CONCLUSION The SUVmax on both early and delayed scans, ΔSUVmax, and RI (%) may be the 4 independent factors to predict CRLM patients harboring KRAS mutations.
Collapse
Affiliation(s)
- Wujian Mao
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Jun Zhou
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - He Zhang
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Lin Qiu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Hui Tan
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yan Hu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET/CT for prediction of KRAS mutation in colorectal cancer patients: a systematic review and meta-analysis. Abdom Radiol (NY) 2019; 44:1703-1711. [PMID: 30603881 DOI: 10.1007/s00261-018-01891-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The purpose of the current study was to investigate the diagnostic performance of F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for the prediction of v-Ki-ras-2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer (CRC) patients through a systematic review and meta-analysis. METHODS The PubMed and EMBASE database, from the earliest available date of indexing through April 30, 2018, were searched for studies evaluating the diagnostic performance of F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients. RESULTS Across 9 studies (804 patients), the pooled sensitivity for F-18 FDG PET/CT was 0.66 (95% CI 0.60-0.73) without heterogeneity (I2 = 34.1, p = 0.14) and a pooled specificity of 0.67 (95% CI 0.62-0.72) without heterogeneity (I2 = 1.63, p = 0.42). Likelihood ratio (LR) syntheses gave an overall positive likelihood ratio (LR+) of 2.0 (95% CI 1.7-2.4) and negative likelihood ratio (LR-) of 0.5 (95% CI 0.41-0.61). The pooled diagnostic odds ratio (DOR) was 4 (95% CI 3-6). Hierarchical summary receiver operating characteristic (ROC) curve indicates that the areas under the curve were 0.69 (95% CI 0.65-0.73). CONCLUSION The current meta-analysis showed the low sensitivity and specificity of F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients. The DOR was very low and the likelihood ratio scatter-gram indicated that F-18 FDG PET/CT might not be useful for prediction of KRAS mutation and not for its exclusion. Therefore, cautious application and interpretation should be paid to the F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients.
Collapse
|
14
|
Lv Y, Wang X, Liang L, Wang L, Lu J. SUVmax and metabolic tumor volume: surrogate image biomarkers of KRAS mutation status in colorectal cancer. Onco Targets Ther 2019; 12:2115-2121. [PMID: 30962693 PMCID: PMC6433102 DOI: 10.2147/ott.s196725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The objective of this study was to explore the association between KRAS mutation status and PET/CT metabolic parameters in colorectal cancer (CRC) patients. Materials and methods One hundred and sixty-four CRC patients were enrolled in this study and received PET/CT examination before operation, then KRAS mutation status was analyzed through pathologically confirmed CRC samples. The association between tumor clinical characteristics and PET/CT metabolic parameters, including maximum standardized uptake value (SUVmax), SUVmean, and metabolic tumor volume (MTV), and KRAS mutation status was analyzed using chi-squared tests, Mann-Whitney U tests, and logistic regression analysis. Results The KRAS mutation type patients exhibited high MTV and high SUVmax using a threshold of 17.8 cm3 and 8.7 respectively and the predictive accuracy was 0.772 and 0.603 respectively. High MTV (P=0.001; 95% CI: 1.119-1.296) and high SUVmax (P=0.048; 95% CI: 0.564-0.985) were independent predictors for KRAS mutation status. Conclusion MTV and SUVmax were associated with KRAS mutation type in CRC patients. PET/CT metabolic parameters can be used for supplementing KRAS mutation status prediction in CRC patients.
Collapse
Affiliation(s)
- Ying Lv
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, People's Republic of China
| | - Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Lerong Liang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, People's Republic of China
| | - Lei Wang
- Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, People's Republic of China,
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Jinan 250014, Shandong, People's Republic of China,
| |
Collapse
|
15
|
Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ, Menke-Van der Houven van Oordt CW, Jansen BHE, Moll AC, Dorsman JC, Castelijns JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018; 9:20134-20155. [PMID: 29732009 PMCID: PMC5929452 DOI: 10.18632/oncotarget.24893] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
With targeted treatments playing an increasing role in oncology, the need arises for fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can be performed repeatedly for treatment monitoring, and can be performed in malignancies for which biopsy is not available. In this systematic review of 187 included articles, we compiled a database of radiogenomic associations and unraveled networks of imaging groups and gene pathways oncology-wide. Results indicated that ill-defined tumor margins and tumor heterogeneity can potentially be used as imaging biomarkers for 1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated with treatment-informing traits including EGFR-mutations and ALK-rearrangements. Oncology-wide gene pathway analysis revealed an association between contrast enhancement (imaging) and the targetable VEGF-signalling pathway. Although the need of independent validation remains a concern, radiogenomic biomarkers showed potential for prognosis prediction and targeted treatment selection. Quantitative imaging enhanced the potential of multiparametric radiogenomic models. A wealth of data has been compiled for guiding future research towards robust non-invasive genomic profiling.
Collapse
Affiliation(s)
- Robin W Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van Amstel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adrianus J de Langen
- Department of Respiratory Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernard H E Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
刘 亮, 黄 劲, 邱 大. KRAS/BRAF基因与结肠癌糖代谢研究现状. Shijie Huaren Xiaohua Zazhi 2017; 25:2045-2050. [DOI: 10.11569/wcjd.v25.i22.2045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
正电子发射断层成像术(positron emission tomography, PET)/计算机断层扫描(computed tomography, CT)显像可用于结肠癌的诊断、监测疗效和预后评估. 18F标记葡萄糖(2-fluorine-18-fluoro-2-deeoxy-D-glucose, 18F-FDG)是PET/CT常用显像剂, 可以反映结肠癌活体组织葡萄糖代谢. KRAS/BRAF基因检测常用于结肠癌靶向治疗方案的选择及评估其治疗效果. 文献报道18F-FDG-PET/CT显像可预测结肠癌KRAS/BRAF基因状态, 能以无创的方式预测结肠癌抗表皮生长因子受体靶向治疗效果. 目前国内有关KRAS/BRAF基因与结肠癌糖代谢的研究相对较少, 本文结合近期的相关文献进行概述.
Collapse
|
17
|
Schillaci O, Urbano N. Personalized medicine: a new option for nuclear medicine and molecular imaging in the third millennium. Eur J Nucl Med Mol Imaging 2017; 44:563-566. [PMID: 28083691 DOI: 10.1007/s00259-017-3616-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Mazzini 121, 00195, Rome, Italy.
- IRCCS Neuromed, Pozzilli, Italy.
| | | |
Collapse
|
18
|
Abstract
Mutations of KRAS are found in a variety of human malignancies, including in pancreatic cancer, colorectal cancer, and non-small cell lung cancer at high frequency. To date, no effective treatments that target mutant variants of KRAS have been introduced into clinical practice. In recent years, a number of studies have shown that the oncogene KRAS plays a critical role in controlling cancer metabolism by orchestrating multiple metabolic changes. One of the metabolic hallmarks of malignant tumor cells is their dependency on aerobic glycolysis, known as the Warburg effect. The role of KRAS signaling in the regulation of aerobic glycolysis has been reported in several types of cancer. KRAS-driven cancers are characterized by altered metabolic pathways involving enhanced nutrients uptake, enhanced glycolysis, enhanced glutaminolysis, and elevated synthesis of fatty acids and nucleotides. However, Just how mutated KRAS can coordinate the metabolic shift to promote tumor growth and whether specific metabolic pathways are essential for the tumorigenesis of KRAS-driven cancers are questions which remain to be answered. In this context, the aim of this review is to summarize current data on KRAS-related metabolic alterations in cancer cells. Given that cancer cells rely on changes in metabolism to support their growth and survival, the targeting of metabolic processes may be a potential strategy for treating KRAS-driven cancers.
Collapse
Affiliation(s)
- Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kosuke Toda
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
19
|
Kawada K, Iwamoto M, Sakai Y. Mechanisms underlying 18F-fluorodeoxyglucose accumulation in colorectal cancer. World J Radiol 2016; 8:880-886. [PMID: 27928469 PMCID: PMC5120247 DOI: 10.4329/wjr.v8.i11.880] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a diagnostic tool to evaluate metabolic activity by measuring accumulation of FDG, an analogue of glucose, and has been widely used for detecting small tumors, monitoring treatment response and predicting patients’ prognosis in a variety of cancers. However, the molecular mechanism of FDG accumulation into tumors remains to be investigated. It is well-known that most cancers are metabolically active with elevated glucose metabolism, a phenomenon known as the Warburg effect. The underlying mechanisms for elevated glucose metabolism in cancer tissues are complex. Recent reports have indicated the potential of FDG-PET/CT scans in predicting mutational status (e.g., KRAS gene mutation) of colorectal cancer (CRC), which suggests that FDG-PET/CT scans may play a key role in determining therapeutic strategies by non-invasively predicting treatment response to anti-epidermal growth factor receptor (EGFR) therapy. In this review, we summarize the current findings investigating the molecular mechanism of 18F-FDG accumulation in CRC.
Collapse
|
20
|
Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, Diskin SJ. Imaging genomics in cancer research: limitations and promises. Br J Radiol 2016; 89:20151030. [PMID: 26864054 DOI: 10.1259/bjr.20151030] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, radiogenomics or imaging genomics has emerged as a novel high-throughput method of associating imaging features with genomic data. Radiogenomics has the potential to provide comprehensive intratumour, intertumour and peritumour information non-invasively. This review article summarizes the current state of radiogenomic research in tumour characterization, discusses some of its limitations and promises and projects its future directions. Semi-radiogenomic studies that relate specific gene expressions to imaging features will also be briefly reviewed.
Collapse
Affiliation(s)
- Harrison X Bai
- 1 Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M Lee
- 1 Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Li Yang
- 2 Department of Neurology, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Paul Zhang
- 3 Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- 1 Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John M Maris
- 4 Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,5 Abramson Family Cancer Research Institute, PerelmanSchool of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- 4 Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,5 Abramson Family Cancer Research Institute, PerelmanSchool of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|