1
|
Xiao S, Yang Z, Lin Z, Chen L, Liao W, Wang J, Gao C, Lu J, Song Y, Su S, Jiang G. Spontaneous Brain Activity Abnormalities in Patients With Temporal Lobe Epilepsy: A Meta-Analysis of 1474 Patients. J Magn Reson Imaging 2025; 61:1782-1794. [PMID: 39215606 DOI: 10.1002/jmri.29568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Abnormalities in resting-state functional brain activity have been detected in patients with temporal lobe epilepsy (TLE). The results of individual neuroimaging studies of TLE, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. PURPOSE To investigate the most consistent regions of resting-state functional brain activity abnormality in patients with TLE through a quantitative meta-analysis of published neuroimaging data. STUDY TYPE Meta-analysis. SUBJECTS Exactly 1474 TLE patients (716 males and 758 females) from 31 studies on resting-state functional brain activity were included in this study. FIELD STRENGTH/SEQUENCE Studies utilizing 1.5 T or 3 T MR scanners were included for meta-analysis. Resting-state functional MRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases were searched to identify studies investigating amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) at the whole-brain level between patients with TLE and healthy controls (HCs). STATISTICAL TESTS Seed-based d Mapping with Permutation of Subject Images, standard randomization tests and meta-regression analysis were used. Results were significant if P < 0.05 with family-wise error corrected. RESULTS Patients with TLE displayed resting-state functional brain activity which was a significant increase in the right hippocampus, and significant decrease in the right angular gurus and right precuneus. Additionally, the meta-regression analysis demonstrated that age (P = 0.231), sex distribution (P = 0.376), and illness duration (P = 0.184), did not show significant associations with resting state functional brain activity in patients with TLE. DATA CONCLUSION Common alteration patterns of spontaneous brain activity were identified in the right hippocampus and default-model network regions in patients with TLE. These findings may contribute to understanding of the underlying mechanism for potentially effective intervention of TLE. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE Stage 2.
Collapse
Affiliation(s)
- Shu Xiao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zibin Yang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zitao Lin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Liqing Chen
- Department of Catheter Intervention, Maoming Maonan District People's Hospital, Maoming, China
| | - Weiming Liao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jurong Wang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Cuihua Gao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jianjun Lu
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yang Song
- Siemens Healthineers Ltd, Shanghai, China
| | - Sulian Su
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
2
|
Song C, Zhang X, Zhang Y, Han S, Ma K, Mao X, Lian Y, Cheng J. Comparision of spontaneous brain activity between hippocampal sclerosis and MRI-negative temporal lobe epilepsy. Epilepsy Behav 2024; 157:109751. [PMID: 38820678 DOI: 10.1016/j.yebeh.2024.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hippocampal sclerosis (HS) is a prevalent cause of temporal lobe epilepsy (TLE). However, up to 30% of individuals with TLE present negative magnetic resonance imaging (MRI) findings. A comprehensive grasp of the similarities and differences in brain activity among distinct TLE subtypes holds significant clinical and scientific importance. OBJECTIVE To comprehensively examine the similarities and differences between TLE with HS (TLE-HS) and MRI-negative TLE (TLE-N) regarding static and dynamic abnormalities in spontaneous brain activity (SBA). Furthermore, we aimed to determine whether these alterations correlate with epilepsy duration and cognition, and to determine a potential differential diagnostic index for clinical utility. METHODS We measured 12 SBA metrics in 38 patients with TLE-HS, 51 with TLE-N, and 53 healthy volunteers. Voxel-wise analysis of variance (ANOVA) and post-hoc comparisons were employed to compare these metrics. The six static metrics included amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), degree centrality (DC), and global signal correlation (GSCorr). Additionally, six corresponding dynamic metrics were assessed: dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr). Receiver operating characteristic (ROC) curve analysis of abnormal indices was employed. Spearman correlation analyses were also conducted to examine the relationship between the abnormal indices, epilepsy duration and cognition scores. RESULTS Both TLE-HS and TLE-N presented as extensive neural network disorders, sharing similar patterns of SBA alterations. The regions with increased fALFF, dALFF, and dfALFF levels were predominantly observed in the mesial temporal lobe, thalamus, basal ganglia, pons, and cerebellum, forming a previously proposed mesial temporal epilepsy network. Conversely, decreased SBA metrics (fALFF, ReHo, dReHo, DC, GSCorr, and VMHC) consistently appeared in the lateral temporal lobe ipsilateral to the epileptic foci. Notably, SBA alterations were more obvious in patients with TLE-HS than in those with TLE-N. Additionally, patients with TLE-HS exhibited reduced VMHC in both mesial and lateral temporal lobes compared with patients with TLE-N, with the hippocampus displaying moderate discriminatory power (AUC = 0.759). Correlation analysis suggested that alterations in SBA indicators may be associated with epilepsy duration and cognitive scores. CONCLUSIONS The simultaneous use of static and dynamic SBA metrics provides evidence supporting the characterisation of both TLE-HS and TLE-N as complex network diseases, facilitating the exploration of mechanisms underlying epileptic activity and cognitive impairment. Overall, SBA abnormality patterns were generally similar between the TLE-HS and TLE-N groups, encompassing networks related to TLE and auditory and occipital visual functions. These changes were more pronounced in the TLE-HS group, particularly within the mesial and lateral temporal lobes.
Collapse
Affiliation(s)
- Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| |
Collapse
|
3
|
Wan X, Zeng Y, Wang J, Tian M, Yin X, Zhang J. Structural and functional abnormalities and cognitive profiles in older adults with early-onset and late-onset focal epilepsy. Cereb Cortex 2024; 34:bhae300. [PMID: 39052362 DOI: 10.1093/cercor/bhae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to determine the patterns of changes in structure, function, and cognitive ability in early-onset and late-onset older adults with focal epilepsy (OFE). This study first utilized the deformation-based morphometry analysis to identify structural abnormalities, which were used as the seed region to investigate the functional connectivity with the whole brain. Next, a correlation analysis was performed between the altered imaging findings and neuropsychiatry assessments. Finally, the potential role of structural-functional abnormalities in the diagnosis of epilepsy was further explored by using mediation analysis. Compared with healthy controls (n = 28), the area of reduced structural volume was concentrated in the bilateral cerebellum, right thalamus, and right middle cingulate cortex, with frontal, temporal, and occipital lobes also affected in early-onset focal epilepsy (n = 26), while late-onset patients (n = 31) displayed cerebellar, thalamic, and cingulate atrophy. Furthermore, correlation analyses suggest an association between structural abnormalities and cognitive assessments. Dysfunctional connectivity in the cerebellum, cingulate cortex, and frontal gyrus partially mediates the relationship between structural abnormalities and the diagnosis of early-onset focal epilepsy. This study identified structural and functional abnormalities in early-onset and late-onset focal epilepsy and explored characters in cognitive performance. Structural-functional coupling may play a potential role in the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yanwei Zeng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200040, China
| |
Collapse
|
4
|
Lai MH, Xu HC, Ding YW, Yang K, Xu XP, Jiang LM. Effectiveness and mechanism of action of rTMS combined with quadriceps strength training in individuals with knee osteoarthritis: study protocol for a randomized controlled trial. BMC Musculoskelet Disord 2024; 25:37. [PMID: 38183070 PMCID: PMC10768414 DOI: 10.1186/s12891-023-07146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Quadriceps training is necessary in function and activity of daily living for patients with knee osteoarthritis (KOA). However, it did not reduce the rate of surgical treatment for end-stage KOA in the long term. This may be related to brain structure changes and maladaptive plasticity in KOA patients. Transcranial Magnetic Stimulation (TMS) could enhance the functional connectivity of brain regions and improves maladaptive plasticity. However, the synergistic effect of the combination of the two for treat KOA is still unclear. Therefore, the purpose of this study is to investigate whether the High-Frequency rTMS combined with quadriceps strength training can improve the pain and function in KOA more effectively than quadriceps training alone and explore the mechanism of action. METHODS This study is an assessor-blind, sham-controlled, randomized controlled trial involving 12 weeks of intervention and 6 months follow-up. 148 participants with KOA will receive usual care management and be randomized into four subgroups equally, including quadriceps strength training, high-frequency rTMS training, sham rTMS and quadriceps strength training, high-frequency rTMS and quadriceps strength training. The rehabilitation interventions will be carried out 5 days per week for a total of 12 weeks. All outcomes will be measured at baseline, 4 weeks, 8 weeks, and 12 weeks during the intervention and 1 month, 3 months and 6 months during the follow-up period. The effectiveness outcomes will be included visual analog scale, isokinetic knee muscle strength, Knee Injury and Osteoarthritis Outcome score and 36-Item Short-Form Health Survey score; The act mechanism outcomes will be included motor evoked potential, grey matter density, white matter, subcortical nuclei volumes, cortical thickness and functional connectivity by MRI. Two-way of variance with repeated measures will be used to test the group and time effect for outcome measures. DISCUSSION The study will be the first protocol to examine whether there are synergistic effects following high-frequency rTMS combined with quadriceps strength training for treat KOA and clarify the mechanism of action. High-frequency rTMS can be added into the training program for KOA patients if it is proven effective. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300067617. Registered on Jan.13,2023.
Collapse
Affiliation(s)
- Ming-Hui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Hai-Chen Xu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yu-Wu Ding
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Kun Yang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xue-Ping Xu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Li-Ming Jiang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
| |
Collapse
|
5
|
Smetana RM, Batchala PP, Lee BG, Albataineh T, Broshek DK, Fountain NB, Abbas S, Quigg M. Multifocal hypometabolic correlates to deficits of verbal memory in mesial temporal lobe epilepsy. Epilepsy Behav 2023; 143:109244. [PMID: 37192585 DOI: 10.1016/j.yebeh.2023.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Neuropsychological research on mesial temporal lobe epilepsy (MTLE) often highlights material-specific memory deficits, but a lesion-focused model may not accurately reflect the underlying networks that support episodic memory in these patients. Our study evaluated the pathophysiology behind verbal learning/memory deficits as revealed by hypometabolism quantified through 18-fluorodeoxyglucose positron emission tomography (FDG-PET). METHODS This retrospective study included thirty presurgical patients with intractable unilateral MTLE who underwent interictal FDG-PET and verbal memory assessment (12 females, mean age: 38.73 years). Fluorodeoxyglucose-positron emission tomography mapping was performed with voxel-based mapping of glucose utilization to a database of age-matched controls to derive regional Z-scores. Neuropsychological outcome variables included scores on learning and recall trials of two distinct verbal memory measures validated for use in epilepsy research. Pearson's correlations evaluated relationships between clinical variables and verbal memory. Linear regression was used to relate regional hypometabolism and verbal memory assessment. Post hoc analyses assessed areas of FDG-PET hypometabolism (threshold Z ≤ -1.645 below mean) where verbal memory was impaired. RESULTS Verbal memory deficits correlated with hypometabolism in limbic structures ipsilateral to language dominance but also correlated with hypometabolism in networks involving the ipsilateral perisylvian cortex and contralateral limbic and nonlimbic structures. DISCUSSION We conclude that traditional models of verbal memory may not adequately capture cognitive deficits in a broader sample of patients with MTLE. This study has important implications for epilepsy surgery protocols that use neuropsychological data and FDG-PET to draw conclusions about surgical risks.
Collapse
Affiliation(s)
- Racheal M Smetana
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Prem P Batchala
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| | - Bern G Lee
- Department of Neuropsychology, Ochsner Health, Baton Rouge, LA, USA.
| | - Tamer Albataineh
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| | - Donna K Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Nathan B Fountain
- Comprehensive Epilepsy Program, Department of Neurology, University of Virginia, Charlottesville, VA, USA.
| | - Salma Abbas
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| | - Mark Quigg
- Comprehensive Epilepsy Program, Department of Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Zang D, Zhao X, Qiao Y, Huo J, Wu X, Wang Z, Xu Z, Zheng R, Qi Z, Mao Y, Zhang L. Enhanced brain parcellation via abnormality inpainting for neuroimage-based consciousness evaluation of hydrocephalus patients by lumbar drainage. Brain Inform 2023; 10:3. [PMID: 36656455 PMCID: PMC9852379 DOI: 10.1186/s40708-022-00181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 01/20/2023] Open
Abstract
Brain network analysis based on structural and functional magnetic resonance imaging (MRI) is considered as an effective method for consciousness evaluation of hydrocephalus patients, which can also be applied to facilitate the ameliorative effect of lumbar cerebrospinal fluid drainage (LCFD). Automatic brain parcellation is a prerequisite for brain network construction. However, hydrocephalus images usually have large deformations and lesion erosions, which becomes challenging for ensuring effective brain parcellation works. In this paper, we develop a novel and robust method for segmenting brain regions of hydrocephalus images. Our main contribution is to design an innovative inpainting method that can amend the large deformations and lesion erosions in hydrocephalus images, and synthesize the normal brain version without injury. The synthesized images can effectively support brain parcellation tasks and lay the foundation for the subsequent brain network construction work. Specifically, the novelty of the inpainting method is that it can utilize the symmetric properties of the brain structure to ensure the quality of the synthesized results. Experiments show that the proposed brain abnormality inpainting method can effectively aid the brain network construction, and improve the CRS-R score estimation which represents the patient's consciousness states. Furthermore, the brain network analysis based on our enhanced brain parcellation method has demonstrated potential imaging biomarkers for better interpreting and understanding the recovery of consciousness in patients with secondary hydrocephalus.
Collapse
Affiliation(s)
- Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Xiangyu Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuanfang Qiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiayu Huo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
7
|
Sainburg LE, Little AA, Johnson GW, Janson AP, Levine KK, González HFJ, Rogers BP, Chang C, Englot DJ, Morgan VL. Characterization of resting functional MRI activity alterations across epileptic foci and networks. Cereb Cortex 2022; 32:5555-5568. [PMID: 35149867 PMCID: PMC9753043 DOI: 10.1093/cercor/bhac035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Brain network alterations have been studied extensively in patients with mesial temporal lobe epilepsy (mTLE) and other focal epilepsies using resting-state functional magnetic resonance imaging (fMRI). However, little has been done to characterize the basic fMRI signal alterations caused by focal epilepsy. Here, we characterize how mTLE affects the fMRI signal in epileptic foci and networks. Resting-state fMRI and diffusion MRI were collected from 47 unilateral mTLE patients and 96 healthy controls. FMRI activity, quantified by amplitude of low-frequency fluctuations, was increased in the epileptic focus and connected regions in mTLE. Evidence for spread of this epileptic fMRI activity was found through linear relationships of regional activity across subjects, the association of these relationships with functional connectivity, and increased activity along white matter tracts. These fMRI activity increases were found to be dependent on the epileptic focus, where the activity was related to disease severity, suggesting the focus to be the origin of these pathological alterations. Furthermore, we found fMRI activity decreases in the default mode network of right mTLE patients with different properties than the activity increases found in the epileptic focus. This work provides insights into basic fMRI signal alterations and their potential spread across networks in focal epilepsy.
Collapse
Affiliation(s)
- Lucas E Sainburg
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Aubrey A Little
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Andrew P Janson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Kaela K Levine
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Hernán F J González
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Baxter P Rogers
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Chen Q, Shen W, Sun H, Zhang H, Liu C, Chen Z, Yu L, Cai X, Ke J, Li L, Zhang L, Fang Q. The effect of coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation on shaping early reorganization of the motor network after stroke. Brain Res 2022; 1790:147959. [PMID: 35654120 DOI: 10.1016/j.brainres.2022.147959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Neural plasticity is a major factor driving cortical reorganization after stroke. This study aimed to evaluate functional connectivity (FC) changes in the cortical motor network after coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment and to assess the correlation between FC changes and functional recovery, further characterizing the neural mechanisms underlying the beneficial effects of rTMS. We randomly divided 63 patients with acute stroke into four groups: (1) Group A received coupled inhibitory-facilitatory rTMS [1 Hz over the contralesional primary motor cortex (M1) and 10 Hz over ipsilesional M1]; (2) Group B received a contralesional sham stimulation and ipsilesional 10 Hz stimulation; (3) Group C received a contralesional 1 Hz rTMS and ipsilesional sham stimulation; and (4) Group D received bilateral sham stimulation only. Standardized rehabilitation therapy was performed immediately after rTMS, and each group was treated with their respective treatment modalities for 4 weeks. Twenty-four hours before and after the intervention, participants underwent resting-state functional magnetic resonance imaging. Additional functional assessments were conducted at baseline, after treatment, and at the 3 month follow-up. The rTMS treatment significantly changed the FCs of intra- and inter-hemispheric cortical motor networks in the rTMS groups (A and B) compared with the sham group (Group D). This effect was more pronounced in Group A, which displayed a changed FC between the contralesional postcentral gyrus and contralesional superior parietal gyrus, between the contralesional precentral gyrus and contralesional postcentral gyrus, and between the ipsilesional postcentral gyrus and contralesional superior parietal gyrus, when compared with Groups B and C. Importantly, FC changes were significantly correlated with improvement of motor function. In the early stages of ischemic stroke, coupled rTMS was more conducive to motor recovery by modulating the FCs of intra-hemispheric and inter-hemispheric motor networks. Our results suggested that FC changes were related to motor function recovery for early-stage cerebral stroke patients treated with coupled rTMS. These findings could help to understand the mechanism of coupled rTMS and further the use of this therapy as an adjunct rehabilitation technique in motor recovery.
Collapse
Affiliation(s)
- Qingmei Chen
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China; Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Wenjun Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haiwei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Hanjun Zhang
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Chuandao Liu
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Zhiguo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Li Li
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
9
|
Li X, Jiang Y, Li W, Qin Y, Li Z, Chen Y, Tong X, Xiao F, Zuo X, Gong Q, Zhou D, Yao D, An D, Luo C. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy. Brain Imaging Behav 2021; 16:324-335. [PMID: 34478055 DOI: 10.1007/s11682-021-00506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.
Collapse
Affiliation(s)
- Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
10
|
Chen Q, Shen W, Sun H, Shen D, Cai X, Ke J, Zhang L, Fang Q. Effects of mirror therapy on motor aphasia after acute cerebral infarction: A randomized controlled trial. NeuroRehabilitation 2021; 49:103-117. [PMID: 34180428 DOI: 10.3233/nre-210125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mirror therapy (MT) has proven to be beneficial for treating patients suffering from motor aphasia after stroke. However, the impacts of MT on neuroplasticity remain unexplored. OBJECTIVE In this paper we conducted a randomized controlled trial to evaluate the treatment using the MT on motor aphasia following acute cerebral infarction. METHODS We randomly assigned 30 patients into test and control groups, with test group patients treated with MT, whereas control group patients were treated with sham MT. At 24 hours prior to and after the intervention, we obtained functional magnetic resonance imaging (fMRI) data from study subjects. At baseline, after treatment and 12-week follow-up, we additionally evaluated patients with the Modified Rankin Scale (mRS), the National Institutes of Health Stroke Scale (NIHSS), and the aphasia quotient (AQ) in the western aphasia test. RESULTS After 2 weeks of treatment, the test group demonstrated significant improvements in AQ values, naming, repetition, spontaneous speech, and mRS scores compared to the control group (P < 0.05). Furthermore, in the follow-up time point (12 weeks), we found that the test group exhibited significantly better NIHSS scores and AQ evaluation indicators than the control group (P < 0.05). Specifically, the fMRI study shows that functional connectivity significantly improved in test group patients mainly among frontal, temporal, and parietal lobes of the left hemisphere with each other than controls group. Meanwhile, we found significantly enhanced functional connectivity with the hippocampus (P < 0.01). CONCLUSIONS Our results indicate that the MT can expedite the recovery of language function during the early phases of stroke recovery. These findings may elucidate the underlying mechanism of MT and the application of this therapy as an adjunct rehabilitation technique in language recovery.
Collapse
Affiliation(s)
- Qingmei Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wenjun Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haiwei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dan Shen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Zhang Z, Zhou X, Liu J, Qin L, Yu L, Pang X, Ye W, Zheng J. Longitudinal assessment of resting-state fMRI in temporal lobe epilepsy: A two-year follow-up study. Epilepsy Behav 2020; 103:106858. [PMID: 31899164 DOI: 10.1016/j.yebeh.2019.106858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022]
Abstract
In this study, we aimed to detect longitudinal alterations in local spontaneous brain activity and functional connectivity (FC) of the default mode network (DMN) in patients with temporal lobe epilepsy (TLE) over a two-year follow-up. We used amplitude of low-frequency fluctuation (ALFF) analysis and independent component analysis (ICA) to explore differences in local spontaneous brain activity and FC strength. In total, 33 participants (16 patients with TLE and 17 age- and gender-matched healthy controls (HCs)) were recruited in this study. All participants performed the Attention Network Test (ANT) for evaluation of the executive control function. Compared with healthy patients at baseline, patients with TLE at follow-up exhibited increased ALFF values in the left medial frontal gyrus, as well as reduced FC values in the left inferior parietal gyrus (IPG) within the DMN. Patients with TLE revealed executive dysfunction, but no progressive deterioration was observed during follow-up. This study revealed the abnormal distribution of ALFF values and Rs-FC changes over a two-year follow-up period in TLE, both of which demonstrated different reorganization trajectories and loss of efficiency.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinping Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Yu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
12
|
Kim JH, Kim JB, Suh S. Alteration of cerebello-thalamocortical spontaneous low-frequency oscillations in juvenile myoclonic epilepsy. Acta Neurol Scand 2019; 140:252-258. [PMID: 31177545 DOI: 10.1111/ane.13138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Altered thalamocortical network has been proposed to play a pivotal role in the principal pathophysiology underlying juvenile myoclonic epilepsy (JME). Recently, resting-state fMRI studies have provided converging evidence for thalamocortical dysconnectivity in patients with JME. Herein, we investigated the amplitude and spatial distribution of spontaneous low-frequency oscillations using analysis of fractional amplitude of low-frequency fluctuation (fALFF) in a large group of JME patients in comparison with controls. METHODS Volumetric MRI and resting-state fMRI were acquired in 75 patients with JME and 62 matched controls. After preprocessing of MRI data, fALFF was computed and then Z-transformed for standardization. fALFF was compared between controls and patients, and correlation analysis between regional fALFF and clinical parameters were performed in patients. RESULTS Compared with controls, JME patients revealed significant fALFF increases in the bilateral medial thalamus, insular cortex/inferior frontal gyrus, and cerebellum vermis (false discovery rate-corrected P < 0.05). There was no region of fALFF reduction in JME patients relative to controls. No significant correlation was observed between regional fALFF and disease duration or cumulative number of generalized tonic-clonic seizures. CONCLUSIONS We have shown alterations of low-frequency oscillations in the thalamus, insular cortex/inferior frontal gyrus, and cerebellum in patients with JME, implicating cerebello-thalamocortical network abnormality in the pathophysiology underlying JME. Our results could further support the recent concept that JME is a network epilepsy involving specific cortical and subcortical structures, especially the cerebello-thalamocortical network.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology Korea University Guro Hospital, Korea University College of Medicine Seoul Korea
| | - Jung Bin Kim
- Department of Neurology Korea University Anam Hospital, Korea University College of Medicine Seoul Korea
| | - Sang‐il Suh
- Department of Radiology Korea University Guro Hospital, Korea University College of Medicine Seoul Korea
| |
Collapse
|
13
|
Du J, Yang F, Zhang Z, Hu J, Xu Q, Hu J, Zeng F, Lu G, Liu X. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study. Brain Imaging Behav 2019; 12:1804-1813. [PMID: 29766355 DOI: 10.1007/s11682-018-9851-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.
Collapse
Affiliation(s)
- Juan Du
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210002, China
| | - Jingze Hu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Jianping Hu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Fanyong Zeng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210002, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
14
|
Du J, Yang F, Hu J, Hu J, Xu Q, Cong N, Zhang Q, Liu L, Mantini D, Zhang Z, Lu G, Liu X. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. NEUROIMAGE-CLINICAL 2018; 21:101620. [PMID: 30527907 PMCID: PMC6411653 DOI: 10.1016/j.nicl.2018.101620] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/11/2018] [Accepted: 12/01/2018] [Indexed: 01/23/2023]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability, and may be beneficial for motor recovery after stroke. However, the neuroplasticity effects of rTMS have not been thoroughly investigated in the early stage after stroke. Objective To comprehensively assess the effects of high- and low-frequency repetitive transcranial magnetic stimulations on motor recovery in early stroke patients, using a randomized controlled trial based on clinical, neurophysiological and functional imaging assessments. Methods Sixty hospitalized, first-ever ischemic stroke patients (within 2 weeks after stroke) with motor deficits were randomly allocated to receive, in addition to standard physical therapy, five consecutive sessions of either: (1) High-frequency (HF) rTMS at 10 Hz over the ipsilesional primary motor cortex (M1); (2) Low-frequency (LF) rTMS at 1 Hz over the contralesional M1; (3) sham rTMS. The primary outcome measure was a motor impairment score (Upper Extremity Fugl-Meyer) evaluated at baseline, after rTMS intervention, and at 3-month follow-up. Cortical excitability and functional magnetic resonance imaging (fMRI) data were obtained within 24 h before and after rTMS intervention. Analyses of variance were conducted to compare the recovery effects among the three rTMS groups, assessed using clinical, neurophysiological and fMRI tests. Results Motor improvement was significantly larger in the two rTMS groups than in the control group. The HF-rTMS group showed significantly increased cortical excitability and motor-evoked fMRI activation in ipsilesional motor areas, whereas the LF-rTMS group had significantly decreased cortical excitability and motor-evoked fMRI activation in contralesional motor areas. Activity in ipsilesional motor cortex significantly correlated with motor function, after intervention as well as at 3-month follow-up. Conclusion HF- and LF-rTMS can both improve motor function by modulating motor cortical activation in the early phase of stroke. rTMS is an effective neurorehabilitative strategy for enhancing motor recovery in the early stage after stroke. Effects of high- versus low-frequency rTMS on motor regions reflect different neuroplastic mechanisms supporting motor recovery. Functional reorganization of the ipsilesional M1 after stroke plays a critical role in long-term motor recovery.
Collapse
Affiliation(s)
- Juan Du
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianping Hu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jingze Hu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Nathan Cong
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ling Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Department of Neurorehabilitation, IRCCS San Camillo Hospital Foundation, Via Alberoni, 70, 30126 Venice Lido, Italy
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|
15
|
Aberrances of Cortex Excitability and Connectivity Underlying Motor Deficit in Acute Stroke. Neural Plast 2018; 2018:1318093. [PMID: 30420876 PMCID: PMC6215555 DOI: 10.1155/2018/1318093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose This study was aimed at evaluating the motor cortical excitability and connectivity underlying the neural mechanism of motor deficit in acute stroke by the combination of functional magnetic resonance imaging (fMRI) and electrophysiological measures. Methods Twenty-five patients with motor deficit after acute ischemic stroke were involved. General linear model and dynamic causal model analyses were applied to fMRI data for detecting motor-related activation and effective connectivity of the motor cortices. Motor cortical excitability was determined as a resting motor threshold (RMT) of motor evoked potential detected by transcranial magnetic stimulation (TMS). fMRI results were correlated with cortical excitability and upper extremity Fugl-Meyer assessment scores, respectively. Results Greater fMRI activation likelihood and motor cortical excitability in the ipsilesional primary motor area (M1) region were associated with better motor performance. During hand movements, the inhibitory connectivity from the contralesional to the ipsilesional M1 was correlated with the degree of motor impairment. Furthermore, ipsilesional motor cortex excitability was correlated with an enhancement of promoting connectivity in ipsilesional M1 or a reduction of interhemispheric inhibition in contralesional M1. Conclusions The study suggested that a dysfunction of the ipsilesional M1 and abnormal interhemispheric interactions might underlie the motor disability in acute ischemic stroke. Modifying the excitability of the motor cortex and correcting the abnormal motor network connectivity associated with the motor deficit might be the therapeutic target in early neurorehabilitation for stroke patients.
Collapse
|
16
|
Zheng L, Bin G, Zeng H, Zou D, Gao J, Zhang J, Huang B. Meta-analysis of voxel-based morphometry studies of gray matter abnormalities in patients with mesial temporal lobe epilepsy and unilateral hippocampal sclerosis. Brain Imaging Behav 2018; 12:1497-1503. [PMID: 29302917 DOI: 10.1007/s11682-017-9797-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We aimed to perform a meta-analysis to systematically determine the most consistent regions of gray matter volume (GMV) abnormality in patients of unilateral mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), and to reveal the difference of GMV abnormality between the patients with left-sided and right-sided MTLE-HS. A comprehensive and systematic search was performed in PubMed for voxel-based morphometry (VBM) studies of MTLE-HS. A total of 12 MTLE-HS studies, including 9 left-sided MTLE-HS (LMTLE-HS) and 8 right-sided MTLE-HS (RMTLE-HS) studies were included. The activation likelihood estimation (ALE) method was applied in our meta-analysis. Compared to the healthy controls, MTLE-HS patients showed significant GMV decrease in the parahippocampal gyrus, left pulvinar and right pyramis. For LMTLE-HS, the most consistent GMV decrease was detected in the left parahippocampal gyrus. For RMTLE-HS, the most consistent GMV decrease was found in the right parahippocampal gyrus. No shared regions of significant GMV reduction were found between LMTLE-HS and RMTLE-HS either. This meta-analysis revealed that MTLE-HS patients had significant GMV reduction even beyond the hippocampus, and the subtypes showed distinct reduction patterns. Our findings, if were further verified with larger samples, would have implications for the clinical diagnosis of MTLE-HS.
Collapse
Affiliation(s)
- Liyun Zheng
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Guo Bin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Dongfang Zou
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Junling Gao
- Centre of Buddhists Studies, Art Faculty, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jian Zhang
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Bingsheng Huang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Dynamic Network Analysis Reveals Altered Temporal Variability in Brain Regions after Stroke: A Longitudinal Resting-State fMRI Study. Neural Plast 2018; 2018:9394156. [PMID: 29849574 PMCID: PMC5907391 DOI: 10.1155/2018/9394156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Recent fMRI studies have demonstrated that resting-state functional connectivity (FC) is of nonstationarity. Temporal variability of FC reflects the dynamic nature of brain activity. Exploring temporal variability of FC offers a new approach to investigate reorganization and integration of brain networks after stroke. Here, we examined longitudinal alterations of FC temporal variability in brain networks after stroke. Nineteen stroke patients underwent resting fMRI scans across the acute stage (within-one-week after stroke), subacute stage (within-two-weeks after stroke), and early chronic stage (3-4 months after stroke). Nineteen age- and sex-matched healthy individuals were enrolled. Compared with the controls, stroke patients exhibited reduced regional temporal variability during the acute stages, which was recovered at the following two stages. Compared with the acute stage, the subacute stage exhibited increased temporal variability in the primary motor, auditory, and visual cortices. Across the three stages, the temporal variability in the ipsilesional precentral gyrus (PreCG) was increased first and then reduced. Increased temporal variability in the ipsilesional PreCG from the acute stage to the subacute stage was correlated with motor recovery from the acute stage to the early chronic stage. Our results demonstrated that temporal variability of brain network might be a potential tool for evaluating and predicting motor recovery after stroke.
Collapse
|
18
|
Kotkowski E, Price LR, Mickle Fox P, Vanasse TJ, Fox PT. The hippocampal network model: A transdiagnostic metaconnectomic approach. NEUROIMAGE-CLINICAL 2018; 18:115-129. [PMID: 29387529 PMCID: PMC5789756 DOI: 10.1016/j.nicl.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 12/14/2022]
Abstract
Purpose The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM) using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH) (Seeley et al., 2009) by identifying structural and functional covariance in this hippocampal network. Methods To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB) meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM) to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the similarities and differences between the structural and functional covariance models. Key findings Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of r = .377 (p = .000049). Significance This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays. We derived regions that structurally co-vary with the hippocampus in a network model using a transdiagnostic meta-analytic approach. We used meta-analytic connectivity mapping to assess inter-regional connectivity from BrainMap's structural and functional databases. We tested the network degeneration hypothesis by identifying network correlations between structural and functional networks.
Collapse
Affiliation(s)
- Eithan Kotkowski
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Larry R Price
- Department of Mathematics, Texas State University, San Marcos, TX, USA; College of Education, Texas State University, San Marcos, TX, USA
| | - P Mickle Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas J Vanasse
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Institute for Neuroscience & Neurotechnology, Shenzhen University, Shenzen, China
| |
Collapse
|
19
|
Hu J, Du J, Xu Q, Yang F, Zeng F, Dai XJ, Liu X, Lu G, Zhang Z. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke. Front Neurol 2017; 8:339. [PMID: 28769870 PMCID: PMC5515815 DOI: 10.3389/fneur.2017.00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI) can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC) and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR) scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery outcome of hand motion performance in the early chronic stages. Couplings between RSFC and motion-related activation were dynamically changed with stroke progression, which suggested changes in the prediction of resting-state brain activity for task-evoked brain activity in different pathological states. The changes in coupling strength between these two types of brain activity implicate a reparative mechanism of brain injury and may represent a biomarker for predicting motor recovery in cerebral stroke.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Medical Imaging, Jinling Hospital, Nanjing Clinical School, Southern Medical University, Nanjing, China.,Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Juan Du
- Department of Neurology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fanyong Zeng
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xi-Jian Dai
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoxue Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing Clinical School, Southern Medical University, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Zhang Z, Liao W, Xu Q, Wei W, Zhou HJ, Sun K, Yang F, Mantini D, Ji X, Lu G. Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy. Hum Brain Mapp 2016; 38:753-766. [PMID: 27677885 DOI: 10.1002/hbm.23415] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
In mesial temporal lobe epilepsy (mTLE), the causal relationship of morphometric alterations between hippocampus and the other regions, that is, how the hippocampal atrophy leads to progressive morphometric alterations in the epileptic network regions remains largely unclear. In this study, a causal network of structural covariance (CaSCN) was proposed to map the causal effects of hippocampal atrophy on the network-based morphometric alterations in mTLE. It was hypothesized that if cross-sectional morphometric MRI data could be attributed temporal information, for example, by sequencing the data according to disease progression information, GCA would be a feasible approach for constructing a CaSCN. Based on a large cohort of mTLE patients (n = 108), the hippocampus-associated CaSCN revealed that the hippocampus and the thalamus were prominent nodes exerting causal effects (i.e., GM reduction) on other regions and that the prefrontal cortex and cerebellum were prominent nodes being subject to causal effects. Intriguingly, compensatory increased gray matter volume in the contralateral temporal region and post cingulate cortex were also detected. The method unraveled richer information for mapping network atrophy in mTLE relative to the traditional methods of stage-specific comparisons and structured covariance network. This study provided new evidence on the network spread mechanism in terms of the causal influence of hippocampal atrophy on progressive brain structural alterations in mTLE. Hum Brain Mapp 38:753-766, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China
| | - Wei Liao
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Center for Cognition and Brain Disorders, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Wei Wei
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Helen Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Kangjian Sun
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Dante Mantini
- Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Belgium
| | - Xueman Ji
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China
| |
Collapse
|