1
|
Neetu, Ramya TNC. A comparative study of the efficacy of alginate lyases in the presence of metal ions elevated in the cystic fibrosis lung milieu. Biochem Biophys Rep 2024; 40:101821. [PMID: 39286289 PMCID: PMC11404220 DOI: 10.1016/j.bbrep.2024.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Pseudomonas aeruginosa, a common cause of morbidity in cystic fibrosis, chronically infects the patient's lungs by forming an alginate-containing biofilm. Alginate lyases are polysaccharide lyases that lyse alginate and are, therefore, potential biofilm-disruptive agents. However, cystic fibrosis sputum contains high levels of metals such as iron and zinc. The efficacy of alginate lyases under these conditions of elevated metal concentrations has not been categorically determined. Here, we have assessed the enzyme activity of two exolytic and five endolytic alginate lyases in the presence of metal ions (Fe2+, Zn2+, Mn2+, Mg2+, Ca2+, Ni2+, Cu2+) elevated in the cystic fibrosis lung milieu. Several of these alginate lyases exhibited increased activity in the presence of Ca2+, and the polysaccharide lyase family 7 members studied here exhibited decreased activity in the presence of Zn2+. The enzyme activity of the PL7 alginate lyases from Cellulophaga algicola (CaAly/CaFLDAly) and Vibrio sp. (VspAlyVI) was not affected in the presence of a mix of all the above-mentioned metal ions at the elevated concentrations found in the cystic fibrosis lung milieu. Specific alginate lyases might, therefore, retain the ability to degrade the alginate-containing Pseudomonas biofilm in the presence of metal ions elevated in the cystic fibrosis lung milieu.
Collapse
Affiliation(s)
- Neetu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Schaub A, Luo B, David SC, Glas I, Klein LK, Costa L, Terrettaz C, Bluvshtein N, Motos G, Violaki K, Pohl MO, Hugentobler W, Nenes A, Stertz S, Krieger UK, Peter T, Kohn T. Salt Supersaturation as an Accelerator of Influenza A Virus Inactivation in 1 μL Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18856-18869. [PMID: 39392017 DOI: 10.1021/acs.est.4c04734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Influenza A virus (IAV) spreads through exhaled aerosol particles and larger droplets. Estimating the stability of IAV is challenging and depends on factors such as the respiratory matrix and drying kinetics. Here, we combine kinetic experiments on millimeter-sized saline droplets with a biophysical aerosol model to quantify the impact of NaCl on IAV stability. We show that IAV inactivation is determined by NaCl concentration, which increases during water evaporation and then decreases again when efflorescence occurs. When drying in air with relative humidity RH = 30%, inactivation follows an inverted sigmoidal curve, with inactivation occurring most rapidly when the NaCl concentration exceeds 20 mol/(kg H2O) immediately prior to efflorescence. Efflorescence reduces the NaCl molality to saturated conditions, resulting in a significantly reduced inactivation rate. We demonstrate that the inactivation rate k depends exponentially on NaCl molality, and after the solution reaches equilibrium, the inactivation proceeds at a first-order rate. Introducing sucrose, an organic cosolute, attenuates IAV inactivation via two mechanisms: first by decreasing the NaCl molality during the drying phase and second by a protective effect against the NaCl-induced inactivation. For both pure saline and sucrose-containing droplets, our biophysical model ResAM accurately simulates the inactivation when NaCl molality is used as the only inactivating factor. This study highlights the role of NaCl molality in IAV inactivation and provides a mechanistic basis for the observed inactivation rates.
Collapse
Affiliation(s)
- Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Shannon C David
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Liviana K Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Laura Costa
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Tafech B, Rokhforouz MR, Leung J, Sung MM, Lin PJ, Sin DD, Lauster D, Block S, Quon BS, Tam Y, Cullis P, Feng JJ, Hedtrich S. Exploring Mechanisms of Lipid Nanoparticle-Mucus Interactions in Healthy and Cystic Fibrosis Conditions. Adv Healthc Mater 2024; 13:e2304525. [PMID: 38563726 DOI: 10.1002/adhm.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mucus forms the first defense line of human lungs, and as such hampers the efficient delivery of therapeutics to the underlying epithelium. This holds particularly true for genetic cargo such as CRISPR-based gene editing tools which cannot readily surmount the mucosal barrier. While lipid nanoparticles (LNPs) emerge as versatile non-viral gene delivery systems that can help overcome the delivery challenge, many knowledge gaps remain, especially for diseased states such as cystic fibrosis (CF). This study provides fundamental insights into Cas9 mRNA or ribonucleoprotein-loaded LNP-mucus interactions in healthy and diseased states by assessing the impact of the genetic cargo, mucin sialylation, mucin concentration, ionic strength, pH, and polyethylene glycol (PEG) concentration and nature on LNP diffusivity leveraging experimental approaches and Brownian dynamics (BD) simulations. Taken together, this study identifies key mucus and LNP characteristics that are critical to enabling a rational LNP design for transmucosal delivery.
Collapse
Affiliation(s)
- Belal Tafech
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mohammad-Reza Rokhforouz
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Molly Mh Sung
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Paulo Jc Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, 12169, Berlin, Germany
| | - Stephan Block
- Institute of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| |
Collapse
|
4
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Casanova M, Maresca M, Poncin I, Point V, Olleik H, Boidin-Wichlacz C, Tasiemski A, Mabrouk K, Cavalier JF, Canaan S. Promising antibacterial efficacy of arenicin peptides against the emerging opportunistic pathogen Mycobacterium abscessus. J Biomed Sci 2024; 31:18. [PMID: 38287360 PMCID: PMC10823733 DOI: 10.1186/s12929-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.
Collapse
Affiliation(s)
- Magali Casanova
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France.
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - Isabelle Poncin
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| | - Vanessa Point
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| | - Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR7273, ICR, 13013, Marseille, France
| | | | - Stéphane Canaan
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| |
Collapse
|
6
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
7
|
Skłodowski K, Suprewicz Ł, Chmielewska-Deptuła SJ, Kaliniak S, Okła S, Zakrzewska M, Minarowski Ł, Mróz R, Daniluk T, Savage PB, Fiedoruk K, Bucki R. Ceragenins exhibit bactericidal properties that are independent of the ionic strength in the environment mimicking cystic fibrosis sputum. Front Microbiol 2023; 14:1290952. [PMID: 38045035 PMCID: PMC10693459 DOI: 10.3389/fmicb.2023.1290952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
The purpose of the work was to investigate the impact of sodium chloride (NaCl) on the antimicrobial efficacy of ceragenins (CSAs) and antimicrobial peptides (AMPs) against bacterial and fungal pathogens associated with cystic fibrosis (CF) lung infections. CF-associated bacterial (Pseudomonas aeruginosa, Ochrobactrum spp., and Staphylococcus aureus), and fungal pathogens (Candida albicans, and Candida tropicalis) were used as target organisms for ceragenins (CSA-13 and CSA-131) and AMPs (LL-37 and omiganan). Susceptibility to the tested compounds was assessed using minimal inhibitory concentrations (MICs) and bactericidal concentrations (MBCs), as well as by colony counting assays in CF sputum samples supplemented with various concentrations of NaCl. Our results demonstrated that ceragenins exhibit potent antimicrobial activity in CF sputum regardless of the NaCl concentration when compared to LL-37 and omiganan. Given the broad-spectrum antimicrobial activity of ceragenins in the microenvironments mimicking the airways of CF patients, ceragenins might be promising agents in managing CF disease.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | | | | | - Sławomir Okła
- Holy Cross Cancer Center, Kielce, Poland
- Institute of Health Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Minarowski
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Robert Mróz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
O'Connor A, Jurado‐Martín I, Mysior MM, Manzira AL, Drabinska J, Simpson JC, Lucey M, Schaffer K, Berisio R, McClean S. A universal stress protein upregulated by hypoxia has a role in Burkholderia cenocepacia intramacrophage survival: Implications for chronic infection in cystic fibrosis. Microbiologyopen 2023; 12:e1311. [PMID: 36825886 PMCID: PMC9733578 DOI: 10.1002/mbo3.1311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Universal stress proteins (USPs) are ubiquitously expressed in bacteria, archaea, and eukaryotes and play a lead role in adaptation to environmental conditions. They enable adaptation of bacterial pathogens to the conditions encountered in the human niche, including hypoxia, oxidative stress, osmotic stress, nutrient deficiency, or acid stress, thereby facilitating colonization. We previously reported that all six USP proteins encoded within a low-oxygen activated (lxa) locus in Burkholderia cenocepacia showed increased abundance during chronic colonization of the cystic fibrosis (CF) lung. However, the role of USPs in chronic cystic fibrosis infection is not well understood. Structural modeling identified surface arginines on one lxa-encoded USP, USP76, which suggested it mediated interactions with heparan sulfate. Using mutants derived from the B. cenocepacia strain, K56-2, we show that USP76 is involved in host cell attachment. Pretreatment of lung epithelial cells with heparanase reduced the binding of the wild-type and complement strains but not the Δusp76 mutant strain, indicating that USP76 is directly or indirectly involved in receptor recognition on the surface of epithelial cells. We also show that USP76 is required for growth and survival in many conditions associated with the CF lung, including acidic conditions and oxidative stress. Moreover, USP76 also has a role in survival in macrophages isolated from people with CF. Overall, while further elucidation of the exact mechanism(s) is required, we can conclude that USP76, which is upregulated during chronic infection, is involved in bacterial survival within CF macrophages, a hallmark of Burkholderia infection.
Collapse
Affiliation(s)
- Andrew O'Connor
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
| | - Irene Jurado‐Martín
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| | - Margaritha M. Mysior
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
- Cell Screening Laboratory, School of Biology and Environmental ScienceUniversity College DublinBelfieldDublinIreland
| | - Anotidaishe L. Manzira
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| | - Jeremy C. Simpson
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
- Cell Screening Laboratory, School of Biology and Environmental ScienceUniversity College DublinBelfieldDublinIreland
| | - Mary Lucey
- Department of MicrobiologySt. Vincent's University HospitalElm ParkDublinIreland
| | - Kirsten Schaffer
- Department of MicrobiologySt. Vincent's University HospitalElm ParkDublinIreland
| | - Rita Berisio
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| | - Siobhán McClean
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| |
Collapse
|
9
|
Papadopoulos A, Busch M, Reiners J, Hachani E, Baeumers M, Berger J, Schmitt L, Jaeger KE, Kovacic F, Smits SHJ, Kedrov A. The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. Front Mol Biosci 2022; 9:1026724. [DOI: 10.3389/fmolb.2022.1026724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 μM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.
Collapse
|
10
|
Garcia Maset R, Hapeshi A, Hall S, Dalgliesh RM, Harrison F, Perrier S. Evaluation of the Antimicrobial Activity in Host-Mimicking Media and In Vivo Toxicity of Antimicrobial Polymers as Functional Mimics of AMPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32855-32868. [PMID: 35819416 PMCID: PMC9335526 DOI: 10.1021/acsami.2c05979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Activity tests for synthetic antimicrobial compounds are often limited to the minimal inhibitory concentration assay using standard media and bacterial strains. In this study, a family of acrylamide copolymers that act as synthetic mimics of antimicrobial peptides were synthesized and shown to have a disruptive effect on bacterial membranes and structural integrity through microscopy techniques and membrane polarization experiments. The polymers were tested for their antimicrobial properties using media that mimic clinically relevant conditions. Additionally, their activity was compared in two different strains of the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa. We showed that the medium composition can have an important influence on the polymer activity as there was a considerable reduction in minimal inhibitory concentrations against S. aureus grown in synthetic wound fluid (SWF), and against P. aeruginosa grown in synthetic cystic fibrosis sputum media (SCFM), compared to the concentrations in standard testing media. In contrast, we observed a complete loss of activity against P. aeruginosa in the serum-containing SWF. Finally, we made use of an emerging invertebrate in vivo model, using Galleria mellonella larvae, to assess toxicity of the polymeric antimicrobials, showing a good correlation with cell line toxicity measurements and demonstrating its potential in the evaluation of novel antimicrobial materials.
Collapse
Affiliation(s)
| | - Alexia Hapeshi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Stephen Hall
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0DE, U.K.
| | - Robert M. Dalgliesh
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0DE, U.K.
| | - Freya Harrison
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
11
|
Pepito JE, Prabhakaran JV, Bheeman DKP, Sah P, Villarias AP, Hussain SA, Gangireddygari VSR, Al Adawi AS. Development of saline loaded mask materials, evaluation of the antimicrobial efficacy and survivability of selected bacteria on these mask materials. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102125. [PMID: 35663349 PMCID: PMC9137251 DOI: 10.1016/j.jksus.2022.102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Objective Surgical face masks have been recommended by World Health Organization (WHO) during the COVID-19 pandemic. Nowadays wearing masks have become a norm and lifestyle around the globe. The present investigation was carried out to evaluate the feasibility of developing masks loaded with analytical grade sodium chloride (NaCl), Iodized salts (IS) and Omani sea salt (OSS) with or without sodium bicarbonate (NaHCO3). Methods The saline loaded masks were prepared by soaking the middle layer of the mask in 30% (w/v) saline solutions (NaCl, IS, OSS) with or without 10% NaHCO3 for 24 h followed by drying at room temperature. The prepared saline solutions and its combinations were evaluated for antimicrobial efficacy against the bacteria like Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhi, and Staphylococcus aureus, and antifungal activity against the Penicillium spp. and Rhizopus spp. by agar diffusion. Optical microscopy was employed to observe the formation of salt crystal in the mask material. Survivability of S. aureus and P. aeruginosa was tested on the mask material loaded with 30% OSS + 10% NaHCO3 at particular time intervals. Results The results showed that a combination of 30% OSS + 10% NaHCO3 exhibited promising antimicrobial activity against all the bacteria as well as Rhizopus spp. compared to the 30% IS + 10% NaHCO3. Moreover, the middle layer of the mask loaded with saline solutions of 30% OSS + 10% NaHCO3 or 30% IS + 10% NaHCO3 have antibacterial activity, particularly for oral microbiome. On dehydration, the masks materials showed the presence of a significant amount of salt crystals. Survivability tests showed that both S. aureus and P. aeruginosa were killed within 3 h of contact with the salt crystals on the mask materials. Conclusions A combination of 30% OSS + 10% NaHCO3 possessed significant antimicrobial activities on the tested microorganisms. Presence of a significant amount of salt crystals on dehydration of the saline loaded masks can be used as an effective protective barrier to infectious respiratory agents.
Collapse
Affiliation(s)
- Julnar Evangelista Pepito
- Applied Biology Section Applied Sciences Department (APS), University of Technology and Applied Sciences (UTAS), Higher College of Technology (HCT), PO Box 74, PC 133, Al-Khuwair, Muscat, Oman
| | - Jayachandran Vavolil Prabhakaran
- Applied Biology Section Applied Sciences Department (APS), University of Technology and Applied Sciences (UTAS), Higher College of Technology (HCT), PO Box 74, PC 133, Al-Khuwair, Muscat, Oman
| | - Dinesh Kada Peela Bheeman
- Applied Biology Section Applied Sciences Department (APS), University of Technology and Applied Sciences (UTAS), Higher College of Technology (HCT), PO Box 74, PC 133, Al-Khuwair, Muscat, Oman
| | - Pankaj Sah
- Applied Biology Section Applied Sciences Department (APS), University of Technology and Applied Sciences (UTAS), Higher College of Technology (HCT), PO Box 74, PC 133, Al-Khuwair, Muscat, Oman
| | - Aldwin Platero Villarias
- Applied Biology Section Applied Sciences Department (APS), University of Technology and Applied Sciences (UTAS), Higher College of Technology (HCT), PO Box 74, PC 133, Al-Khuwair, Muscat, Oman
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Venkata Subba Reddy Gangireddygari
- Plant Virus Research, Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Afraa Said Al Adawi
- Applied Biology Section Applied Sciences Department (APS), University of Technology and Applied Sciences (UTAS), Higher College of Technology (HCT), PO Box 74, PC 133, Al-Khuwair, Muscat, Oman
| |
Collapse
|
12
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
13
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Huijghebaert S, Hoste L, Vanham G. Essentials in saline pharmacology for nasal or respiratory hygiene in times of COVID-19. Eur J Clin Pharmacol 2021; 77:1275-1293. [PMID: 33772626 PMCID: PMC7998085 DOI: 10.1007/s00228-021-03102-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Nasal irrigation or nebulizing aerosol of isotonic or hypertonic saline is a traditional method for respiratory or nasal care. A recent small study in outpatients with COVID-19 without acute respiratory distress syndrome suggests substantial symptom resolution. We therefore analyzed pharmacological/pharmacodynamic effects of isotonic or hypertonic saline, relevant to SARS-CoV-2 infection and respiratory care. METHODS Mixed search method. RESULTS Due to its wetting properties, saline achieves an improved spreading of alveolar lining fluid and has been shown to reduce bio-aerosols and viral load. Saline provides moisture to respiratory epithelia and gels mucus, promotes ciliary beating, and improves mucociliary clearance. Coronaviruses and SARS-CoV-2 damage ciliated epithelium in the nose and airways. Saline inhibits SARS-CoV-2 replication in Vero cells; possible interactions involve the viral ACE2-entry mechanism (chloride-dependent ACE2 configuration), furin and 3CLpro (inhibition by NaCl), and the sodium channel ENaC. Saline shifts myeloperoxidase activity in epithelial or phagocytic cells to produce hypochlorous acid. Clinically, nasal or respiratory airway care with saline reduces symptoms of seasonal coronaviruses and other common cold viruses. Its use as aerosol reduces hospitalization rates for bronchiolitis in children. Preliminary data suggest symptom reduction in symptomatic COVID-19 patients if saline is initiated within 48 h of symptom onset. CONCLUSIONS Saline interacts at various levels relevant to nasal or respiratory hygiene (nasal irrigation, gargling or aerosol). If used from the onset of common cold symptoms, it may represent a useful add-on to first-line interventions for COVID-19. Formal evaluation in mild COVID-19 is desirable as to establish efficacy and optimal treatment regimens.
Collapse
Affiliation(s)
| | - Levi Hoste
- Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Guido Vanham
- Department of Biomedical Sciences, Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
15
|
Portelinha J, Angeles-Boza AM. The Antimicrobial Peptide Gad-1 Clears Pseudomonas aeruginosa Biofilms under Cystic Fibrosis Conditions. Chembiochem 2021; 22:1646-1655. [PMID: 33428273 DOI: 10.1002/cbic.202000816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA.,Institute of Material Science, University of Connecticut, 97 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| |
Collapse
|
16
|
Kummarapurugu AB, Zheng S, Pulsipher A, Savage JR, Ma J, Rubin BK, Kennedy TP, Voynow JA. Polysulfated Hyaluronan GlycoMira-1111 Inhibits Elastase and Improves Rheology in Cystic Fibrosis Sputum. Am J Respir Cell Mol Biol 2021; 64:260-267. [PMID: 33264072 DOI: 10.1165/rcmb.2020-0157oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is marked by high concentrations of neutrophil elastase (NE) and DNA polymers; both factors contribute to airway disease. Although inhaled recombinant human dornase alfa reduces the frequency of CF pulmonary exacerbations, it also increases free NE activity in the sputum. There are no approved anti-NE therapies for patients with CF. We investigated whether synthetic, low-molecular weight polysulfated hyaluronan GlycoMira-1111 (GM-1111) would be effective as an anti-NE drug using ex vivo CF sputum. Anti-NE activity of GM-1111 was tested in CF sputum in the presence or absence of dornase alfa and/or hypertonic saline using a spectrophotometric assay specific for human NE and was compared with unfractionated heparin. We tested whether GM-1111 disaggregated DNA from CF sputum (using gel electrophoresis analysis) or modified CF sputum viscoelastic properties (using a dynamic rheometer). GM-1111 and unfractionated heparin had near equivalent anti-NE activity in CF sputum in the presence of dornase alfa. Both GM-1111 and unfractionated heparin retained anti-NE activity in hypertonic saline but with decreased activity. GM-1111 increased the release of soluble DNA in CF sputum, resulting in improved depolymerization efficacy of dornase alfa. GM-1111 decreased CF sputum elasticity. GM-1111 inhibited NE activity, enhanced DNA depolymerization by deoxyribonuclease, and decreased viscoelastic properties of CF sputum, similar to effects reported previously for unfractionated heparin. Unlike heparins, GM-1111 is synthetic, with minimal anticoagulant activity, and is not derived from animal products. These key attributes provide advantages over unfractionated heparin as a potential therapeutic for CF.
Collapse
Affiliation(s)
- Apparao B Kummarapurugu
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - Shuo Zheng
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Jonathan Ma
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - Bruce K Rubin
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - Thomas P Kennedy
- GlycoMira Therapeutics, Salt Lake City, Utah; and.,Department of Medicine, Tulane Medical Center, New Orleans, Louisiana
| | - Judith A Voynow
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Lin K, Schulte CR, Marr LC. Survival of MS2 and Φ6 viruses in droplets as a function of relative humidity, pH, and salt, protein, and surfactant concentrations. PLoS One 2020; 15:e0243505. [PMID: 33290421 PMCID: PMC7723248 DOI: 10.1371/journal.pone.0243505] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/22/2020] [Indexed: 01/14/2023] Open
Abstract
The survival of viruses in droplets is known to depend on droplets' chemical composition, which may vary in respiratory fluid between individuals and over the course of disease. This relationship is also important for understanding the persistence of viruses in droplets generated from wastewater, freshwater, and seawater. We investigated the effects of salt (0, 1, and 35 g/L), protein (0, 100, and 1000 μg/mL), surfactant (0, 1, and 10 μg/mL), and droplet pH (4.0, 7.0, and 10.0) on the viability of viruses in 1-μL droplets pipetted onto polystyrene surfaces and exposed to 20%, 50%, and 80% relative humidity (RH) using a culture-based approach. Results showed that viability of MS2, a non-enveloped virus, was generally higher than that of Φ6, an enveloped virus, in droplets after 1 hour. The chemical composition of droplets greatly influenced virus viability. Specifically, the survival of MS2 was similar in droplets at different pH values, but the viability of Φ6 was significantly reduced in acidic and basic droplets compared to neutral ones. The presence of bovine serum albumin protected both MS2 and Φ6 from inactivation in droplets. The effects of sodium chloride and the surfactant sodium dodecyl sulfate varied by virus type and RH. Meanwhile, RH affected the viability of viruses as shown previously: viability was lowest at intermediate to high RH. The results demonstrate that the viability of viruses is determined by the chemical composition of carrier droplets, especially pH and protein content, and environmental factors. These findings emphasize the importance of understanding the chemical composition of carrier droplets in order to predict the persistence of viruses contained in them.
Collapse
Affiliation(s)
- Kaisen Lin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Chase R. Schulte
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
18
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
19
|
Spina F, Tigini V, Romagnolo A, Varese GC. Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains. Life (Basel) 2018; 8:E27. [PMID: 29973501 PMCID: PMC6161071 DOI: 10.3390/life8030027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/05/2022] Open
Abstract
Autochthonous fungi from contaminated wastewater are potential successful agents bioremediation thanks to their adaptation to pollutant toxicity and to competition with other microorganisms present in wastewater treatment plant. Biological treatment by means of selected fungal strains could be a potential tool to integrate the leachate depuration process, thanks to their fungal extracellular enzymes with non-selective catalytical activity. In the present work, the treatability of two real samples (a crude landfill leachate and the effluent coming from a traditional wastewater treatment plant) was investigated in decolorization experiments with fungal biomasses. Five autochthonous fungi, Penicillium brevicompactum MUT 793, Pseudallescheria boydii MUT 721, P. boydii MUT 1269, Phanerochaete sanguinea MUT 1284, and Flammulina velutipes MUT 1275, were selected in a previous miniaturized decolorization screening. Their effectiveness in terms of decolorization, enzymatic activity (laccases and peroxidases), biomass growth and ecotoxicity removal was compared with that of five allochthonous fungal strains, Pleurotus ostreatus MUT 2976, Porostereum spadiceum MUT 1585, Trametespubescens MUT 2400, Bjerkanderaadusta MUT 3060 and B. adusta MUT 2295, selected for their well known capability to degrade recalcitrant pollutants. Moreover, the effect of biomass immobilization on polyurethane foam (PUF) cube was assessed. The best decolorization (60%) was achieved by P. spadiceum MUT 1585, P. boydii MUT 721 and MUT 1269. In the first case, the DP was achieved gradually, suggesting a biodegradation process with the involvement of peroxidases. On the contrary, the two autochthonous fungi seem to bioremediate the effluent mainly by biosorption, with the abatement of the toxicity (up to 100%). The biomass immobilization enhanced enzymatic activity, but not the DP. Moreover, it limited the biomass growth for the fast growing fungi, MUT 721 and MUT 1269. In conclusion, robust and versatile strains coming from well-characterized collections of microorganisms can obtain excellent results comparing and even exceeding the bioremediation yields of strains already adapted to pollutants.
Collapse
Affiliation(s)
- Federica Spina
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| | - Valeria Tigini
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| | - Alice Romagnolo
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| |
Collapse
|