1
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
2
|
Yang Y, Zhang Y, Ren Y, He Z, Cao W, Liu Y, Ren J, Wang Y, Wang G, Fu Y, Hou J. Characterization and function of Japanese flounder (Paralichthys olivaceus) slc2a6 in response to lymphocystis disease virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109150. [PMID: 37838208 DOI: 10.1016/j.fsi.2023.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Slc2a6 is a member of the slc2 family (solute carrier 2 family) and previous reports have indicated its involvement in the inflammatory response. Slc2a6 is regulated by the NF-ĸB signaling pathway. This study investigated the differential expression of slc2a6 in the early embryonic development of Japanese flounder, revealing that the early gastrula stage had the highest level of slc2a6 expression. Moreover, slc2a6 expression was increased in vitro after stimulation by lymphocystis disease virus (LCDV), and in vivo experiments also showed significantly elevated levels in the spleen and muscle tissues following LCDV stimulation. Subcellular localization revealed that Slc2a6 was expressed in both the nucleus and cytoplasm of cells. The pcDNA3.1-slc2a6 overexpression plasmid was successfully constructed; the si-slc2a6 interfering strand was screened and samples were collected. The expression of NF-ĸB signaling pathway-related genes il-1β, il-6, nf-ĸb, and tnf-α was evaluated in overexpressed, silenced, and LCDV-stimulated samples. The results showed that slc2a6 is involved in viral regulation in Japanese flounder by regulating innate immune responses.
Collapse
Affiliation(s)
- Yucong Yang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yitong Zhang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Wei Cao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufeng Liu
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Jiangong Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
3
|
Xiong L, Zhu C, Lu Y, Chen M, Li M. Serum THBS2 is a potential biomarker for the diagnosis of non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:15671-15677. [PMID: 37658862 DOI: 10.1007/s00432-023-05330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE This study primarily aimed to analyze the levels of THBS2 in the serum of patients diagnosed with non-small cell lung cancer (NSCLC), and subsequently evaluate its potential as a diagnostic biomarker for NSCLC. METHODS Serum samples were collected from 150 diagnosed NSCLC patients and 150 healthy individuals. The THBS2 concentration in these samples was determined using an enzyme-linked immunosorbent assay (ELISA). The study also investigated the correlation between THBS2 levels and various clinicopathological characteristics in NSCLC patients. The diagnostic sensitivity and specificity of serum THBS2 for NSCLC were assessed using receiver operating characteristic (ROC) curves and their corresponding area under the curve (AUC). RESULTS Serum THBS2 levels in NSCLC patients were significantly elevated compared to those in healthy individuals. THBS2 levels showed a significant correlation with tumor differentiation grade, tumor size, TNM stage, lymph node metastasis, and distant metastasis. No significant correlation was identified between serum THBS2 levels and other parameters such as gender, age, height, weight, BMI, smoking history, and tumor histological type. At a cutoff value of 7.62 ng/mL, THBS2 could effectively differentiate NSCLC patients from healthy individuals, with a sensitivity of 85.31% and a specificity of 88.92%. The AUC for NSCLC diagnosis using THBS2 was 0.812, significantly surpassing the performance of traditional tumor markers tested, including CEA (0.728), and CYFRA 21‑1 (0.685). CONCLUSIONS Elevated serum THBS2 levels in NSCLC patients suggest its potential as a novel and reliable diagnostic biomarker for NSCLC. Its superior diagnostic performance could potentially outperform traditional tumor markers, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Emergency Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Cheng Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuhai Lu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Mao Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Mingwei Li
- Department of Emergency Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| |
Collapse
|
4
|
Eckersley A, Ozols M, Chen P, Tam V, Hoyland JA, Trafford A, Chan D, Sherratt MJ. Peptide Location Fingerprinting Reveals Tissue Region-Specific Differences in Protein Structures in an Ageing Human Organ. Int J Mol Sci 2021; 22:10408. [PMID: 34638745 PMCID: PMC8509034 DOI: 10.3390/ijms221910408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
In ageing tissues, long-lived extracellular matrix (ECM) proteins are susceptible to the accumulation of structural damage due to diverse mechanisms including glycation, oxidation and protease cleavage. Peptide location fingerprinting (PLF) is a new mass spectrometry (MS) analysis technique capable of identifying proteins exhibiting structural differences in complex proteomes. PLF applied to published young and aged intervertebral disc (IVD) MS datasets (posterior, lateral and anterior regions of the annulus fibrosus) identified 268 proteins with age-associated structural differences. For several ECM assemblies (collagens I, II and V and aggrecan), these differences were markedly conserved between degeneration-prone (posterior and lateral) and -resistant (anterior) regions. Significant differences in peptide yields, observed within collagen I α2, collagen II α1 and collagen V α1, were located within their triple-helical regions and/or cleaved C-terminal propeptides, indicating potential accumulation of damage and impaired maintenance. Several proteins (collagen V α1, collagen II α1 and aggrecan) also exhibited tissue region (lateral)-specific differences in structure between aged and young samples, suggesting that some ageing mechanisms may act locally within tissues. This study not only reveals possible age-associated differences in ECM protein structures which are tissue-region specific, but also highlights the ability of PLF as a proteomic tool to aid in biomarker discovery.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK; (M.O.); (J.A.H.)
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK; (M.O.); (J.A.H.)
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton CB10 1SA, UK
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; (P.C.); (V.T.); (D.C.)
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; (P.C.); (V.T.); (D.C.)
| | - Judith A. Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK; (M.O.); (J.A.H.)
- NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Andrew Trafford
- Manchester Academic Health Science Centre, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; (P.C.); (V.T.); (D.C.)
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK; (M.O.); (J.A.H.)
| |
Collapse
|
5
|
Fiani B, Covarrubias C, Jarrah R. Genetic Predictors of Early-Onset Spinal Intervertebral Disc Degeneration: Part Two of Two. Cureus 2021; 13:e15183. [PMID: 34178504 PMCID: PMC8221650 DOI: 10.7759/cureus.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Understanding genetic indicators is a fundamental aspect to characterizing the pathophysiology of chronic diseases such as intervertebral disc degeneration (IVDD). In our previous spinal genetics review, we characterized some more common genetic influencers in the context of IVDD. In this second part of our two-part comprehensive spinal genetics review, we characterize the more infrequently studied genes that have pathophysiological relevance. In doing so, we aim to expand upon the current gene-library for IVDD. The genes of interest include: asporin, cartilage intermediate layer protein, insulin-like growth factor 1 receptor, matrix metallopeptidase 9, and thrombospondin 2. Findings show that these genetic indicators have trends and polymorphisms that may have causal associations with the manifestation of IVDD. However, there is a narrow selection of studies that use genetic indicators to describe correlations to the severity and longevity of the pathology. Nevertheless, with the continued identification of risk genes involved with IVDD, the possibilities for refined models of gene therapies can be established for future treatment trials.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - Claudia Covarrubias
- School of Medicine, Universidad Anáhuac Querétaro, Santiago de Querétaro, MEX
| | - Ryan Jarrah
- College of Arts and Sciences, University of Michigan-Flint, Flint, USA
| |
Collapse
|
6
|
Chang H, Yang X, You K, Jiang M, Cai F, Zhang Y, Liu L, Liu H, Liu X. Integrating multiple microarray dataset analysis and machine learning methods to reveal the key genes and regulatory mechanisms underlying human intervertebral disc degeneration. PeerJ 2020; 8:e10120. [PMID: 33083145 PMCID: PMC7566771 DOI: 10.7717/peerj.10120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc degeneration (IDD), a major cause of lower back pain, has multiple contributing factors including genetics, environment, age, and loading history. Bioinformatics analysis has been extensively used to identify diagnostic biomarkers and therapeutic targets for IDD diagnosis and treatment. However, multiple microarray dataset analysis and machine learning methods have not been integrated. In this study, we downloaded the mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) expression profiles (GSE34095, GSE15227, GSE63492 GSE116726, GSE56081 and GSE67566) associated with IDD from the GEO database. Using differential expression analysis and recursive feature elimination, we extracted four optimal feature genes. We then used the support vector machine (SVM) to make a classification model with the four optimal feature genes. The ROC curve was used to evaluate the model's performance, and the expression profiles (GSE63492, GSE116726, GSE56081, and GSE67566) were used to construct a competitive endogenous RNA (ceRNA) regulatory network and explore the underlying mechanisms of the feature genes. We found that three miRNAs (hsa-miR-4728-5p, hsa-miR-5196-5p, and hsa-miR-185-5p) and three circRNAs (hsa_circRNA_100723, hsa_circRNA_104471, and hsa_circRNA_100750) were important regulators with more interactions than the other RNAs across the whole network. The expression level analysis of the three datasets revealed that BCAS4 and SCRG1 were key genes involved in IDD development. Ultimately, our study proposes a novel approach to determining reliable and effective targets in IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Hongze Chang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaolong Yang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Kemin You
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Mingwei Jiang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Feng Cai
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Yan Zhang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Liang Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Hui Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaodong Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
7
|
Hu S, Fu Y, Yan B, Shen Z, Lan T. Analysis of key genes and pathways associated with the pathogenesis of intervertebral disc degeneration. J Orthop Surg Res 2020; 15:371. [PMID: 32873329 PMCID: PMC7465721 DOI: 10.1186/s13018-020-01902-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is widely known as the main contributor to low back pain which has a negative socioeconomic impact worldwide. However, the underlying mechanism remains unclear. This study aims to analyze the dataset GSE23130 using bioinformatics methods to identify the pivotal genes and pathways associated with IDD. MATERIAL/METHODS The gene expression data of GSE23130 was downloaded, and differentially expressed genes (DEGs) were extracted from 8 samples and 15 controls. GO and KEGG pathway enrichment analyses were performed. Also, protein-protein interaction (PPI) network was constructed and visualized, followed by identification of hub genes and key module. RESULTS A total of 30 downregulated and 79 upregulated genes were identified. The DEGs were mainly enriched in the regulation of protein catabolic process, extracellular matrix organization, collagen fibril organization, and extracellular structure organization. Meanwhile, we found that most DEGs were primarily enriched in the PI3K-Akt signaling pathway. The top 10 hub genes were FN1, COL1A2, SPARC, COL3A1, CTGF, LUM, TIMP1, THBS2, COL5A2, and TGFB1. CONCLUSIONS In summary, key candidate genes and pathways were identified by using integrated bioinformatics analysis, which may provide insights into the underlying mechanisms and offer potential target genes for the treatment of IDD.
Collapse
Affiliation(s)
- Shiyu Hu
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Yan
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhe Shen
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Tao Lan
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
8
|
Guo Y, Nan X, Zhang X, Wang G, Ren Y, Wang Y, Fu Y, Hou J. Molecular characterization and functional analysis of Japanese flounder (Paralichthys olivaceus) thbs2 in response to lymphocystis disease virus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:183-190. [PMID: 31330254 DOI: 10.1016/j.fsi.2019.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
In mammals, a matricellular protein, thrombospondin 2 (Thbs2) has been reported to play important roles in modulating cell-matrix interactions, vascular integrity and thrombosis formation. However, the role of gene, thbs2 has not yet been studied in teleost. In the present study, this novel fish gene from Japanese flounder was cloned and its function in resistant to lymphocystis disease virus was elucidated. The Japanese flounder thbs2 encoded a 1176-amino acid protein with 91% identity to medaka. Amino acid sequence indicated that Japanese flounder Thbs2 contained 10 typical conserved domains. The thbs2 was expressed in all stages of embryo development, and in hatched larva stage, its expression was significantly higher than that in other stages (P < 0.05). The relative expression level of thbs2 was significantly higher in the head kidney, liver, blood, gill, and heart of the lymphocystis disease virus resistant fish than in sensitive fish (P < 0.05); and in muscle, this difference was at highly significant (P < 0.01). Additionally, the distribution of Thbs2 in tissue was evaluated by immunohistochemical staining. Subcellular localization analysis showed that Thbs2 was distributed throughout the cytoplasm of the cells. Taken together, our results provide new basic data for thbs2 function, especially its role in anti-lymphocystis disease virus immune response.
Collapse
Affiliation(s)
- Yanan Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding Genetics, Shanghai, 201306, China; Laboratory of Cell and Molecular Biology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, 100141, China
| | - Xingyu Nan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding Genetics, Shanghai, 201306, China; Laboratory of Cell and Molecular Biology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Zhang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Guixing Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuqin Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufen Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding Genetics, Shanghai, 201306, China; Laboratory of Cell and Molecular Biology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jilun Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, 100141, China; Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
9
|
Munir S, Rade M, Määttä JH, Freidin MB, Williams FMK. Intervertebral Disc Biology: Genetic Basis of Disc Degeneration. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:143-150. [PMID: 30464887 PMCID: PMC6223888 DOI: 10.1007/s40610-018-0101-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review aims to highlight recent advances in understanding the genetic basis of intervertebral disc degeneration (IDD). RECENT FINDINGS It has been known for some time that IDD is highly heritable. Recent studies, and in particular the availability of agnostic techniques such as genome-wide association studies, have identified new variants in a variety of genes which contribute to the risk of IDD and to back pain. SUMMARY A variety of genetic variants are involved in IDD. Some are shared with variants predisposing to back pain, but few have been identified reliably in either phenotype. Further research is required to explain fully the high heritability and how the genetic variants influence cell biology to lead to IDD.
Collapse
Affiliation(s)
- Sabrina Munir
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
| | - Marinko Rade
- Department of Physical and Rehabilitation Medicine, Kuopio University Hospital, Kuopio, Finland
- Faculty of Medicine, Orthopaedic and Rehabilitation Hospital “Prim. dr.Martin Horvat”, Josip Juraj Strossmayer University of Osijek, Rovinj, Croatia
| | - Juhani H. Määttä
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
| |
Collapse
|