1
|
Lammert DB, Fernandez RF, Liu X, Chen J, Koehler RC, Scafidi S, Scafidi J. Proteomic analysis of hippocampus reveals metabolic reprogramming in a piglet model of mild hypoxic ischemic encephalopathy. PLoS One 2025; 20:e0320869. [PMID: 40273072 PMCID: PMC12021231 DOI: 10.1371/journal.pone.0320869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) remains a leading cause of long-term neurologic morbidity. Fifty percent of HIE cases are mild and do not have clearly defined therapeutic interventions. Emergent evidence now demonstrates that up to 25% of children with mild HIE suffer motor and developmental delay by 18 months and 35% have cognitive impairments by age 5 years. Interestingly, the hippocampus, which is responsible for learning and memory, does not show overt injury but does demonstrate volume changes on imaging that correlate with cognitive and behavioral outcomes. Although there is extensive data regarding pathophysiological changes following moderate and severe HIE, there is a paucity of understanding regarding the extent, duration, and compensatory adaptations in the mild neonatal HIE brain. We performed hippocampal proteomic analysis using a swine model of mild neonatal hypoxia-asphyxia. Hippocampi were collected at 24 or 72 hours after injury, and proteomics was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Pathway analysis demonstrated that several metabolic pathways are temporally regulated after mild HIE. Specifically, amino acid, carbohydrate, and one-carbon metabolism increased at 24 hours while fat metabolism and oxidative phosphorylation decreased at 24 hours. Downregulation of oxidative phosphorylation was more pronounced at 72 hours. Our data demonstrate that metabolic reprogramming occurs after mild HIE, and these changes persist up to 72 hours after injury. These results provide new evidence that mild HIE disrupts brain metabolism, emphasizing the need for a better understanding of the underlying pathophysiology of mild HIE and development of targeted therapeutic interventions for this population.
Collapse
Affiliation(s)
- Dawn B. Lammert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Regina F. Fernandez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Tianjin University, Tianjin, China
| | - Jingyao Chen
- The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph Scafidi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Hu YC, Sheu JN, Lee IC. The role of proteinuria on a simple urinalysis in neonatal hypoxic-ischemic encephalopathy: association with clinical and neurodevelopmental outcomes. Front Neurol 2025; 16:1451346. [PMID: 40170893 PMCID: PMC11958179 DOI: 10.3389/fneur.2025.1451346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Background Early diagnosis and initiation of hypothermia therapy for neonatal hypoxic-ischemic encephalopathy (HIE) are critical within the first 6 h after birth. Collecting urine, especially from neonates with HIE, can be challenging and time-consuming post-birth due to the likelihood of renal injury. Purpose We assessed whether urine protein levels, measured via a simple urinalysis on the first day, could correlate with the outcomes of neonatal HIE. Methods We conducted urine analyses of patients with neonatal HIE on the first day to establish a correlation between the severity of HIE and neurodevelopmental outcomes at ≥1 year of age. Eighty-three patients were enrolled, encompassing cases of mild (n = 37), moderate (n = 30), and severe (n = 16) HIE. Three cases were excluded due to mortality caused by severe HIE with associated auria. Based on urine protein levels, patients were grouped as 0 to 30 mg/dL (group 1), 30 to 100 mg/dL (group 2), 100 to 300 mg/dL (group 3), and ≥ 300 mg (group 4). Results Urine protein levels were correlated with serum lactic acid levels [p = 0.006; r (81) = 0.304; n = 83], clinical staging [p = 0.001; r (81) = 0.36], and neurodevelopmental outcomes at ≥1 year of age [X 2 (3, n = 83) = 11.35; p = 0.009]. The odds ratio for moderate-to-severe HIE in group 4 patients was 7.66 [p = 0.010; 95% confidence interval (CI), 1.61-36.33] compared with those in groups 1-3. Those in group 4 had a high positive predictive value (87.50%) and high specificity (94.59%). Conclusion Elevated urine protein levels observed in the first urinalysis conducted on the day after birth were found to be associated with serum lactic acid levels, clinical staging, and neurodevelopmental outcomes at ≥1 year of age.
Collapse
Affiliation(s)
- Ya-Chun Hu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ji-Nan Sheu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pediatric Nephrology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Inn-Chi Lee
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Timasheva Y, Lepik K, Liska O, Papp B, Kutalik Z. Widespread natural selection on metabolite levels in humans. Genome Res 2024; 34:1121-1129. [PMID: 39152035 PMCID: PMC11444169 DOI: 10.1101/gr.278756.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Natural selection acts ubiquitously on complex human traits, predominantly constraining the occurrence of extreme phenotypes (stabilizing selection). These constraints propagate to DNA sequence variants associated with traits under selection. The genetic signatures of such evolutionary events can thus be detected via combining effect size estimates from genetic association studies and the corresponding allele frequencies. Although this approach has been successfully applied to high-level traits, the prevalence and mode of selection acting on molecular traits remain poorly understood. Here, we estimate the action of natural selection on genetic variants associated with metabolite levels, an important layer of molecular traits. By leveraging summary statistics of published genome-wide association studies with large sample sizes, we find strong evidence of stabilizing selection for 15 out of 97 plasma metabolites, with nonessential amino acids displaying especially strong selection signatures. Mendelian randomization analysis reveals that metabolites under stronger stabilizing selection display larger effects on a range of clinically relevant complex traits, suggesting that maintaining a disease-free profile may be an important source of selective constraints on the metabolome. Metabolites under strong stabilizing selection in humans are also more conserved in their concentrations among diverse mammalian species, suggesting shared selective forces across micro- and macroevolutionary timescales. Overall, this study demonstrates that variation in metabolite levels among humans is frequently shaped by natural selection and this may act through their causal impact on disease susceptibility.
Collapse
Affiliation(s)
- Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Medical Genetics, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Computational Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Kaido Lepik
- Department of Computational Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Center for Primary Care and Public Health, University of Lausanne, CH-1010 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Orsolya Liska
- HCEMM-BRC Metabolic Systems Biology Lab, H-6726 Szeged, Hungary
- Synthetic and Systems Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, HUN-REN, H-6726 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, H-6726 Szeged, Hungary
- Synthetic and Systems Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, HUN-REN, H-6726 Szeged, Hungary
- National Laboratory for Health Security, Institute of Biochemistry, Biological Research Centre, HUN-REN, H-6726 Szeged, Hungary
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, CH-1015 Lausanne, Switzerland;
- Center for Primary Care and Public Health, University of Lausanne, CH-1010 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Liu Y, Liu NX. Correlation Study on the Prognostic Value of miR-21 and S-100B Protein Levels in Neonatal Hypoxic-Ischemic Encephalopathy Undergoing Hypothermia Therapy. Int J Neurosci 2024:1-12. [PMID: 38512134 DOI: 10.1080/00207454.2024.2334375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To evaluate the variations in serum levels of microRNA-21 (miR-21) and S-100B protein in neonates with hypoxic-ischemic encephalopathy (HIE) after receiving hypothermia therapy and explore the correlation of these biomarkers with the neurodevelopmental prognosis of the infants. METHODS This retrospective analysis included 90 neonatal HIE patients diagnosed and treated between January 2019 and December 2022. Real-time quantitative PCR and enzyme-linked immunosorbent assay (ELISA) methods were used to measure miR-21 and S-100B protein levels. Neurodevelopmental assessments were conducted at one year, and follow-up was performed using the Bayley Scales of Infant and Toddler Development third edition. Statistical analysis was carried out using SPSS software, with t-tests for continuous variables, chi-square tests for categorical data, Pearson correlation coefficient for correlation analysis, and multivariate regression analysis to adjust for confounding factors. RESULTS After hypothermia therapy, the observation group showed a significant decrease in miR-21 and S-100B protein levels (P < 0.001), and neurodevelopmental scores were significantly higher than the control group (P < 0.05). Correlation analysis indicated a negative correlation between miR-21 and neurodevelopmental scores (r=-0.62, P < 0.001), as well as a negative correlation between S-100B protein levels (r=-0.76, P < 0.001). Multivariate regression analysis demonstrated that miR-21 levels and S-100B protein levels maintained independent negative correlations with neurodevelopmental scores (P < 0.001). CONCLUSION Hypothermia therapy significantly reduces serum levels of miR-21 and S-100B protein in neonatal HIE patients and may be associated with better prognosis. miR-21 and S-100B serve as prognostic biomarkers, aiding in predicting and improving the treatment outcomes and long-term prognosis of neonatal HIE.
Collapse
Affiliation(s)
- Yan Liu
- Department of Newborn Pediatrics, Hengshui people's Hospital, Hengshui 053000, Hebei, China
| | - Nuo-Xuan Liu
- Department of Clincal, Hebei North University, Zhangjiakou 050031, Hebei, China
| |
Collapse
|
6
|
Shevtsova Y, Starodubtseva N, Tokareva A, Goryunov K, Sadekova A, Vedikhina I, Ivanetz T, Ionov O, Frankevich V, Plotnikov E, Sukhikh G, Zorov D, Silachev D. Metabolite Biomarkers for Early Ischemic-Hypoxic Encephalopathy: An Experimental Study Using the NeoBase 2 MSMS Kit in a Rat Model. Int J Mol Sci 2024; 25:2035. [PMID: 38396712 PMCID: PMC10888647 DOI: 10.3390/ijms25042035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the most common causes of childhood disability. Hypothermic therapy is currently the only approved neuroprotective approach. However, early diagnosis of HIE can be challenging, especially in the first hours after birth when the decision to use hypothermic therapy is critical. Distinguishing HIE from other neonatal conditions, such as sepsis, becomes a significant problem in diagnosis. This study explored the utility of a metabolomic-based approach employing the NeoBase 2 MSMS kit to diagnose HIE using dry blood stains in a Rice-Vannucci model of HIE in rats. We evaluated the diagnostic fidelity of this approach in a range between 3 and 6 h after the onset of HIE, including in the context of systemic inflammation and concomitant hypothermic therapy. Discriminant analysis revealed several metabolite patterns associated with HIE. A logistic regression model using glycine levels achieved high diagnostic fidelity with areas under the receiver operating characteristic curve of 0.94 at 3 h and 0.96 at 6 h after the onset of HIE. In addition, orthogonal partial least squares discriminant analysis, which included five metabolites, achieved 100% sensitivity and 80% specificity within 3 h of HIE. These results highlight the significant potential of the NeoBase 2 MSMS kit for the early diagnosis of HIE and could improve patient management and outcomes in this serious illness.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Alsu Sadekova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Irina Vedikhina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Tatiana Ivanetz
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Dmitry Zorov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
7
|
Sun J, Ou Y, Liu X, Sun H, Guo Z, Qi F, Lan Y, Liu W, Sun W. LC-MS-based urine metabolomics analysis of chronic subdural hematoma for biomarker discovery. Proteomics Clin Appl 2024; 18:e2200107. [PMID: 37697649 DOI: 10.1002/prca.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Chronic subdural hematoma (CSDH) is one of the most common neurosurgical diseases with atypical manifestations. The aim of this study was to utilize urine metabolomics to explore potential biomarkers for the diagnosis and prognosis of CSDH. METHODS Seventy-seven healthy controls and ninety-two patients with CSDH were enrolled in our study. In total, 261 urine samples divided into the discovery group and validation group were analyzed by LC-MS. The statistical analysis and functional annotation were applied to discover potential biomarker panels and altered metabolic pathways. RESULTS A total of 53 differential metabolites were identified in this study. And the urinary metabolic profiles showed apparent separation between patients and controls. Further functional annotation showed that the differential metabolites were associated with lipid metabolism, fatty acid metabolism, amino acid metabolism, biotin metabolism, steroid hormone biosynthesis, and pentose and glucuronate interconversions. Moreover, one panel of Capryloylglycine, cis-5-Octenoic acid, Ethisterone, and 5,6-DiHETE showed good predictive performance in the diagnosis of CSDH, with an AUC of 0.89 in discovery group and an AUC of 0.822 in validation group. Another five metabolites (Trilobinol, 3'-Hydroxyropivacaine, Ethisterone, Arginyl-Proline, 5-alpha-Dihydrotestosterone glucuronide) showed the levels of them returned to a healthy state after surgery, showing good possibility to monitor the recovery of CSDH patients. CONCLUSION AND CLINICAL RELEVANCE The findings of the study revealed urine metabolomic differences between CSDH and controls. The potentially diagnostic and prognostic biomarker panels of urine metabolites were established, and functional analysis demonstrated deeper metabolic disorders of CSDH, which might conduce to improve early diagnose of CSDH clinically.
Collapse
Affiliation(s)
- Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Messina M, Arena A, Iacobacci R, La Spina L, Meli C, Raudino F, Ruggieri M. Butyrylcarnitine Elevation in Newborn Screening: Reducing False Positives and Distinguishing between Two Rare Diseases through the Evaluation of New Ratios. Biomedicines 2023; 11:3247. [PMID: 38137468 PMCID: PMC10741594 DOI: 10.3390/biomedicines11123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
One of the main challenges of newborn screening programs, which screen for inherited metabolic disorders, is cutting down on false positives (FPs) in order to avoid family stresses, additional analyses, and unnecessary costs. False positives are partly caused by an insubstantial number of robust biomarkers in evaluations. Another challenge is how to distinguish between diseases which share the same primary marker and for which secondary biomarkers are just as highly desirable. Focusing on pathologies that involve butyrylcarnitine (C4) elevation, such as short-chain acylCoA dehydrogenase deficiency (SCADD) and isobutyrylCoA dehydrogenase deficiency (IBDD), we investigated the acylcarnitine profile of 121 newborns with a C4 increase to discover secondary markers to achieve two goals: reduce the FP rate and discriminate between the two rare diseases. Analyses were carried out using tandem mass spectrometry with whole blood samples spotted on filter paper. Seven new biomarkers (C4/C0, C4/C5, C4/C5DC\C6OH, C4/C6, C4/C8, C4/C14:1, C4/C16:1) were identified using a non-parametric ANOVA analysis. Then, the corresponding cut-off values were found and applied to the screening program. The seven new ratios were shown to be robust (p < 0.001 and p < 0.01, 0.0937 < ε2 < 0.231) in discriminating between FP and IBDD patients, FP and SCADD patients, or SCADD and IBDD patients. Our results suggest that the new ratios are optimal indicators for identifying true positives, distinguishing between two rare diseases that share the same primary biomarker, improving the predictive positive value (PPV) and reducing the false positive rate (FPR).
Collapse
Affiliation(s)
- MariaAnna Messina
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Alessia Arena
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Riccardo Iacobacci
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Luisa La Spina
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Concetta Meli
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Federica Raudino
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Martino Ruggieri
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Caramelo I, Coelho M, Rosado M, Cardoso CMP, Dinis A, Duarte CB, Grãos M, Manadas B. Biomarkers of hypoxic-ischemic encephalopathy: a systematic review. World J Pediatr 2023; 19:505-548. [PMID: 37084165 PMCID: PMC10199106 DOI: 10.1007/s12519-023-00698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Current diagnostic criteria for hypoxic-ischemic encephalopathy in the early hours lack objective measurement tools. Therefore, this systematic review aims to identify putative molecules that can be used in diagnosis in daily clinical practice (PROSPERO ID: CRD42021272610). DATA SOURCES Searches were performed in PubMed, Web of Science, and Science Direct databases until November 2020. English original papers analyzing samples from newborns > 36 weeks that met at least two American College of Obstetricians and Gynecologists diagnostic criteria and/or imaging evidence of cerebral damage were included. Bias was assessed by the Newcastle-Ottawa Scale. The search and data extraction were verified by two authors separately. RESULTS From 373 papers, 30 met the inclusion criteria. Data from samples collected in the first 72 hours were extracted, and increased serum levels of neuron-specific enolase and S100-calcium-binding protein-B were associated with a worse prognosis in newborns that suffered an episode of perinatal asphyxia. In addition, the levels of glial fibrillary acidic protein, ubiquitin carboxyl terminal hydrolase isozyme-L1, glutamic pyruvic transaminase-2, lactate, and glucose were elevated in newborns diagnosed with hypoxic-ischemic encephalopathy. Moreover, pathway analysis revealed insulin-like growth factor signaling and alanine, aspartate and glutamate metabolism to be involved in the early molecular response to insult. CONCLUSIONS Neuron-specific enolase and S100-calcium-binding protein-B are potential biomarkers, since they are correlated with an unfavorable outcome of hypoxic-ischemic encephalopathy newborns. However, more studies are required to determine the sensitivity and specificity of this approach to be validated for clinical practice.
Collapse
Affiliation(s)
- Inês Caramelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Margarida Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | | | - Alexandra Dinis
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar E Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer Association, 3060-197, Cantanhede, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789, Coimbra, Portugal.
| |
Collapse
|
10
|
Mavroudakis L, Lanekoff I. Ischemic Stroke Causes Disruptions in the Carnitine Shuttle System. Metabolites 2023; 13:metabo13020278. [PMID: 36837897 PMCID: PMC9968086 DOI: 10.3390/metabo13020278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Gaining a deep understanding of the molecular mechanisms underlying ischemic stroke is necessary to develop treatment alternatives. Ischemic stroke is known to cause a cellular energy imbalance when glucose supply is deprived, enhancing the role for energy production via β-oxidation where acylcarnitines are essential for the transportation of fatty acids into the mitochondria. Although traditional bulk analysis methods enable sensitive detection of acylcarnitines, they do not provide information on their abundances in various tissue regions. However, with quantitative mass spectrometry imaging the detected concentrations and spatial distributions of endogenous molecules can be readily obtained in an unbiased way. Here, we use pneumatically assisted nanospray desorption electrospray ionization mass spectrometry imaging (PA nano-DESI MSI) doped with internal standards to study the distributions of acylcarnitines in mouse brain affected by stroke. The internal standards enable quantitative imaging and annotation of endogenous acylcarnitines is achieved by studying fragmentation patterns. We report a significant accumulation of long-chain acylcarnitines due to ischemia in brain tissue of the middle cerebral artery occlusion (MCAO) stroke model. Further, we estimate activities of carnitine transporting enzymes and demonstrate disruptions in the carnitine shuttle system that affects the β-oxidation in the mitochondria. Our results show the importance for quantitative monitoring of metabolite distributions in distinct tissue regions to understand cell compensation mechanisms involved in handling damage caused by stroke.
Collapse
|
11
|
Perrone S, Grassi F, Caporilli C, Boscarino G, Carbone G, Petrolini C, Gambini LM, Di Peri A, Moretti S, Buonocore G, Esposito SMR. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants (Basel) 2023; 12:antiox12020309. [PMID: 36829868 PMCID: PMC9952571 DOI: 10.3390/antiox12020309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The Brain is vulnerable to numerous insults that can act in the pre-, peri-, and post-natal period. There is growing evidence that demonstrate how oxidative stress (OS) could represent the final common pathway of all these insults. Fetuses and newborns are particularly vulnerable to OS due to their inability to active the antioxidant defenses. Specific molecules involved in OS could be measured in biologic fluids as early biomarkers of neonatal brain injury with an essential role in neuroprotection. Although S-100B seems to be the most studied biomarker, its use in clinical practice is limited by the complexity of brain damage etiopathogenesis and the time of blood sampling in relation to the brain injury. Reliable early specific serum markers are currently lacking in clinical practice. It is essential to determine if there are specific biomarkers that can help caregivers to monitor the progression of the disease in order to active an early neuroprotective strategy. We aimed to describe, in an educational review, the actual evidence on serum biomarkers for the early identification of newborns at a high risk of neurological diseases. To move the biomarkers from the bench to the bedside, the assays must be not only be of a high sensitivity but suitable for the very rapid processing and return of the results for the clinical practice to act on. For the best prognosis, more studies should focus on the association of these biomarkers to the type and severity of perinatal brain damage.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Carbone
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lucia Maria Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Di Peri
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sabrina Moretti
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
12
|
Lin CN, Hsu KC, Huang KL, Huang WC, Hung YL, Lee TH. Identification of Metabolomics Biomarkers in Extracranial Carotid Artery Stenosis. Cells 2022; 11:3022. [PMID: 36230983 PMCID: PMC9563778 DOI: 10.3390/cells11193022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The biochemical identification of carotid artery stenosis (CAS) is still a challenge. Hence, 349 male subjects (176 normal controls and 173 stroke patients with extracranial CAS ≥ 50% diameter stenosis) were recruited. Blood samples were collected 14 days after stroke onset with no acute illness. Carotid plaque score (≥2, ≥5 and ≥8) was used to define CAS severity. Serum metabolites were analyzed using a targeted Absolute IDQ®p180 kit. Results showed hypertension, diabetes, smoking, and alcohol consumption were more common, but levels of diastolic blood pressure, HDL-C, LDL-C, and cholesterol were lower in CAS patients than controls (p < 0.05), suggesting intensive medical treatment for CAS. PCA and PLS-DA did not demonstrate clear separation between controls and CAS patients. Decision tree and random forest showed that acylcarnitine species (C4, C14:1, C18), amino acids and biogenic amines (SDMA), and glycerophospholipids (PC aa C36:6, PC ae C34:3) contributed to the prediction of CAS. Metabolite panel analysis showed high specificity (0.923 ± 0.081, 0.906 ± 0.086 and 0.881 ± 0.109) but low sensitivity (0.230 ± 0.166, 0.240 ± 0.176 and 0.271 ± 0.169) in the detection of CAS (≥2, ≥5 and ≥8, respectively). The present study suggests that metabolomics profiles could help in differentiating between controls and CAS patients and in monitoring the progression of CAS.
Collapse
Affiliation(s)
- Chia-Ni Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Cheng Hsu
- School of Medicine, College of Medicine, Artificial Intelligence Center for Medical Diagnosis, and Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Kuo-Lun Huang
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Cheng Huang
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Lun Hung
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Rasineni GK, Panigrahy N, Rath SN, Chinnaboina M, Konanki R, Chirla DK, Madduri S. Diagnostic and Therapeutic Roles of the "Omics" in Hypoxic-Ischemic Encephalopathy in Neonates. Bioengineering (Basel) 2022; 9:498. [PMID: 36290466 PMCID: PMC9598631 DOI: 10.3390/bioengineering9100498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Perinatal asphyxia and neonatal encephalopathy remain major causes of neonatal mortality, despite the improved availability of diagnostic and therapeutic tools, contributing to neurological and intellectual disabilities worldwide. An approach using a combination of clinical data, neuroimaging, and biochemical parameters is the current strategy towards the improved diagnosis and prognosis of the outcome in neonatal hypoxic-ischemic encephalopathy (HIE) using bioengineering methods. Traditional biomarkers are of little use in this multifactorial and variable phenotype-presenting clinical condition. Novel systems of biology-based "omics" approaches (genomics, transcriptome proteomics, and metabolomics) may help to identify biomarkers associated with brain and other tissue injuries, predicting the disease severity in HIE. Biomarker studies using omics technologies will likely be a key feature of future neuroprotective treatment methods and will help to assess the successful treatment and long-term efficacy of the intervention. This article reviews the roles of different omics as biomarkers of HIE and outlines the existing knowledge of our current understanding of the clinical use of different omics molecules as novel neonatal brain injury biomarkers, which may lead to improved interventions related to the diagnostic and therapeutic aspects of HIE.
Collapse
Affiliation(s)
- Girish Kumar Rasineni
- LCMS Division, Tenet Medcorp Pvt. Ltd., 54 Kineta Towers Road No 3, Banjara Hills, Hyderabad 500034, India
| | | | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502284, India
| | - Madhurarekha Chinnaboina
- LCMS Division, Tenet Medcorp Pvt. Ltd., 54 Kineta Towers Road No 3, Banjara Hills, Hyderabad 500034, India
| | - Ramesh Konanki
- Department of Pediatric Neurology, Rainbow Children’s Hospital, Hyderabad 500034, India
| | - Dinesh Kumar Chirla
- Department of Neonatology, Rainbow Children’s Hospital, Hyderabad 500034, India
| | - Srinivas Madduri
- Bioengineering and Regenerative Medicine, Department of Biomedical Engineering, University of Basel, University Hospital Basel, 4001 Basel, Switzerland
- Department of Surgery, Bioengineering and Neuroregeneration, University of Geneva, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Zhang W, Cui Y, Zhang J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front Pharmacol 2022; 13:948939. [PMID: 35935868 PMCID: PMC9355468 DOI: 10.3389/fphar.2022.948939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia (HUA) is a common metabolic disease that is an independent risk factor for comorbidities such as hypertension, chronic kidney disease, and coronary artery disease. The prevalence of HUA has increased over the last several decades with improved living standards and increased lifespans. Metabolites are considered the most direct reflection of individual physiological and pathological conditions, and represent attractive candidates to provide deep insights into disease phenotypes. Metabolomics, a technique used to profile metabolites in biofluids and tissues, is a powerful tool for identification of novel biomarkers, and can be used to provide valuable insights into the etiopathogenesis of metabolic diseases and to evaluate the efficacy of drugs. In this study, multi metabolomics-based analysis of the blood, urine, and feces of rats with HUA showed that HUA significantly altered metabolite profiles. Astragalus membranaceus (AM) and benbromomalone significantly mitigated these changes in blood and feces, but not in urine. Some crucial metabolic pathways including lipid metabolism, lipid signaling, hormones synthesis, unsaturated fatty acid (UFAs) absorption, and tryptophan metabolism, were seriously disrupted in HUA rats. In addition, AM administration exerted better treatment effects on HUA than benbromomalone. Furthermore, additional supplementation with UFAs and tryptophan may also induce therapeutic effects against HUA.
Collapse
Affiliation(s)
- Wenwen Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- The School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang,
| |
Collapse
|
15
|
Liang Y, Feng Q, Wang Z. Mass Spectrometry Imaging as a New Method: To Reveal the Pathogenesis and the Mechanism of Traditional Medicine in Cerebral Ischemia. Front Pharmacol 2022; 13:887050. [PMID: 35721195 PMCID: PMC9204101 DOI: 10.3389/fphar.2022.887050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Mass spectrometry imaging (MSI) can describe the spatial distribution of molecules in various complex biological samples, such as metabolites, lipids, peptides and proteins in a comprehensive way, and can provide highly relevant supplementary information when combined with other molecular imaging techniques and chromatography techniques, so it has been used more and more widely in biomedical research. The application of mass spectrometry imaging in neuroscience is developing. It is very advantageous and necessary to use MSI to study various pathophysiological processes involved in brain injury and functional recovery during cerebral ischemia. Therefore, this paper introduces the techniques of mass spectrometry, including the principle of mass spectrometry, the acquisition and preparation of imaging samples, the commonly used ionization techniques, and the optimization of the current applied methodology. Furthermore, the research on the mechanism of cerebral ischemia by mass spectrometry was reviewed, such as phosphatidylcholine involved, dopamine, spatial distribution and level changes of physiological substances such as ATP in the Krebs cycle; The characteristics of mass spectrometry imaging as one of the methods of metabolomics in screening biomarkers related to cerebral ischemia were analyzed the advantages of MSI in revealing drug distribution and the mechanism of traditional drugs were summarized, and the existing problems of MSI were also analyzed and relevant suggestions were put forward.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhang Wang,
| |
Collapse
|
16
|
Dave AM, Genaro-Mattos TC, Korade Z, Peeples ES. Neonatal Hypoxic-Ischemic Brain Injury Alters Brain Acylcarnitine Levels in a Mouse Model. Metabolites 2022; 12:metabo12050467. [PMID: 35629971 PMCID: PMC9143624 DOI: 10.3390/metabo12050467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
Hypoxic-ischemic brain injury (HIBI) leads to depletion of ATP, mitochondrial dysfunction, and enhanced oxidant formation. Measurement of acylcarnitines may provide insight into mitochondrial dysfunction. Plasma acylcarnitine levels are altered in neonates after an HIBI, but individual acylcarnitine levels in the brain have not been evaluated. Additionally, it is unknown if plasma acylcarnitines reflect brain acylcarnitine changes. In this study, postnatal day 9 CD1 mouse pups were randomized to HIBI induced by carotid artery ligation, followed by 30 min at 8% oxygen, or to sham surgery and normoxia, with subgroups for tissue collection at 30 min, 24 h, or 72 h after injury (12 animals/group). Plasma, liver, muscle, and brain (dissected into the cortex, cerebellum, and striatum/thalamus) tissues were collected for acylcarnitine analysis by LC-MS. At 30 min after HIBI, acylcarnitine levels were significantly increased, but the differences resolved by 24 h. Palmitoylcarnitine was increased in the cortex, muscle, and plasma, and stearoylcarnitine in the cortex, striatum/thalamus, and cerebellum. Other acylcarnitines were elevated only in the muscle and plasma. In conclusion, although plasma acylcarnitine results in this study mimic those seen previously in humans, our data suggest that the plasma acylcarnitine profile was more reflective of muscle changes than brain changes. Acylcarnitine metabolism may be a target for therapeutic intervention after neonatal HIBI, though the lack of change after 30 min suggests a limited therapeutic window.
Collapse
Affiliation(s)
- Amanda M. Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.M.D.); (Z.K.)
- Children’s Hospital & Medical Center, Omaha, NE 68114, USA
- Child Health Research Institute, Omaha, NE 68198, USA;
| | - Thiago C. Genaro-Mattos
- Child Health Research Institute, Omaha, NE 68198, USA;
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.M.D.); (Z.K.)
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.M.D.); (Z.K.)
- Children’s Hospital & Medical Center, Omaha, NE 68114, USA
- Child Health Research Institute, Omaha, NE 68198, USA;
- Correspondence: ; Tel.: +1-402-955-6140; Fax: +1-402-955-3398
| |
Collapse
|
17
|
Identifying Early Diagnostic Biomarkers Associated with Neonatal Hypoxic-Ischemic Encephalopathy. Diagnostics (Basel) 2021; 11:diagnostics11050897. [PMID: 34070031 PMCID: PMC8158091 DOI: 10.3390/diagnostics11050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Identifying an effective method for the early diagnosis of neonatal hypoxic-ischemic encephalopathy (HIE) would be beneficial for effective therapies. Methods: We studied blood biomarkers before 6 h after birth to correlate the degree of neonatal HIE. A total of 80 patients were divided into group 1 (mild HIE) and group 2 (moderate or severe HIE). Then, 42 patients from group 2 received hypothermia therapy and were further divided into group 3 (unremarkable or mild MRI results) and group 4 (severe MRI results). Results: Between groups 1 and 2, lactate, creatinine, white blood cells, and lactate dehydrogenase (LDH) were significantly different. Between groups 3 and 4, lactate, prothrombin time, and albumin were significantly different. Sarnat staging was based on our observation that more than 45 mg/dL of lactate combined with more than 1000 U/L of LDH yielded the highest positive predictive value (PPV) (95.7%; odds ratio, 22.00), but a low negative predictive value (NPV) for moderate or severe HIE. Using more than 45 mg/dL of lactate yielded the highest NPV (71.4%) correlated with moderate or severe HIE. Conclusions: Lactate combined with LDH before 6 h after birth yielded a high PPV. Using combined biomarkers to exclude mild HIE, include moderate or severe HIE, and initialize hypothermia therapy is feasible.
Collapse
|
18
|
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain-Findings from Experimental Animal Models. Nutrients 2021; 13:1685. [PMID: 34063417 PMCID: PMC8156420 DOI: 10.3390/nu13051685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe and long-term vitamin C deficiency can lead to fatal scurvy, which is fortunately considered rare today. However, a moderate state of vitamin C (vitC) deficiency (hypovitaminosis C)-defined as a plasma concentration below 23 μM-is estimated to affect up to 10% of the population in the Western world, albeit clinical hallmarks in addition to scurvy have not been linked to vitC deficiency. The brain maintains a high vitC content and uniquely high levels during deficiency, supporting vitC's importance in the brain. Actions include both antioxidant and co-factor functions, rendering vitamin C deficiency likely to affect several targets in the brain, and it could be particularly significant during development where a high cellular metabolism and an immature antioxidant system might increase sensitivity. However, investigations of a non-scorbutic state of vitC deficiency and effects on the developing young brain are scarce. This narrative review provides a comprehensive overview of the complex mechanisms that regulate vitC homeostasis in vivo and in the brain in particular. Functions of vitC in the brain and the potential consequences of deficiency during brain development are highlighted, based primarily on findings from experimental animal models. Perspectives for future investigations of vitC are outlined.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| |
Collapse
|
19
|
Pecze L, Randi EB, Szabo C. Meta-analysis of metabolites involved in bioenergetic pathways reveals a pseudohypoxic state in Down syndrome. Mol Med 2020; 26:102. [PMID: 33167881 PMCID: PMC7653803 DOI: 10.1186/s10020-020-00225-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical observations and preclinical studies both suggest that Down syndrome (DS) may be associated with significant metabolic and bioenergetic alterations. However, the relevant scientific literature has not yet been systematically reviewed. The aim of the current study was to conduct a meta-analysis of metabolites involved in bioenergetics pathways in DS to conclusively determine the difference between DS and control subjects. We discuss these findings and their potential relevance in the context of pathogenesis and experimental therapy of DS. Articles published before July 1, 2020, were identified by using the search terms “Down syndrome” and “metabolite name” or “trisomy 21” and “metabolite name”. Moreover, DS-related metabolomics studies and bioenergetics literature were also reviewed. 41 published reports and associated databases were identified, from which the descriptive information and the relevant metabolomic parameters were extracted and analyzed. Mixed effect model revealed the following changes in DS: significantly decreased ATP, CoQ10, homocysteine, serine, arginine and tyrosine; slightly decreased ADP; significantly increased uric acid, succinate, lactate and cysteine; slightly increased phosphate, pyruvate and citrate. However, the concentrations of AMP, 2,3-diphosphoglycerate, glucose, and glutamine were comparable in the DS vs. control populations. We conclude that cells of subjects with DS are in a pseudo-hypoxic state: the cellular metabolic and bio-energetic mechanisms exhibit pathophysiological alterations that resemble the cellular responses associated with hypoxia, even though the supply of the cells with oxygen is not disrupted. This fundamental alteration may be, at least in part, responsible for a variety of functional deficits associated with DS, including reduced exercise difference, impaired neurocognitive status and neurodegeneration.
Collapse
Affiliation(s)
- Laszlo Pecze
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B Randi
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
20
|
Menéndez-Valladares P, Sola-Idígora N, Fuerte-Hortigón A, Alonso-Pérez I, Duque-Sánchez C, Domínguez-Mayoral AM, Ybot-González P, Montaner J. Lessons learned from proteome analysis of perinatal neurovascular pathologies. Expert Rev Proteomics 2020; 17:469-481. [PMID: 32877618 DOI: 10.1080/14789450.2020.1807335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Perinatal and pediatric diseases related to neurovascular disorders cause significant problems during life, affecting a population with a long life expectancy. Early diagnosis and assessment of the severity of these diseases are crucial to establish an appropriate neuroprotective treatment. Currently, physical examination, neuroimaging and clinical judgment are the main tools for diagnosis, although these tests have certain limitations. There is growing interest in the potential value of noninvasive biomarkers that can be used to monitor child patients at risk of brain damage, allowing accurate, and reproducible measurements. AREAS COVERED This review describes potential biomarkers for the diagnosis of perinatal neurovascular diseases and discusses the possibilities they open for the classification and treatment of neonatal neurovascular diseases. EXPERT OPINION Although high rates of ischemic and hemorrhagic stroke exist in pediatric populations, most studies have focused on biomarkers of hypoxic-ischemic encephalopathy. Inflammatory and neuronal biomarkers such as S-100B and GFAP, in combination with others yet to be discovered, could be considered as part of multiplex panels to diagnose these diseases and potentially for monitoring response to treatments. Ideally, noninvasive biofluids would be the best source for evaluating these biomarkers in proteomic assays in perinatal patients.
Collapse
Affiliation(s)
| | - Noelia Sola-Idígora
- Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | | | - Irene Alonso-Pérez
- Neuropediatric Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain
| | | | | | - Patricia Ybot-González
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | - Joan Montaner
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,The Neurovascular Research Lab, IBIS/HUVR/CSIC/US , Sevilla, Spain
| |
Collapse
|
21
|
Widmer M, Thommen EB, Becker C, Beck K, Vincent AM, Perrig S, Keller A, Bernasconi L, Neyer P, Marsch S, Pargger H, Sutter R, Tisljar K, Hunziker S. Association of acyl carnitines and mortality in out-of-hospital-cardiac-arrest patients: Results of a prospective observational study. J Crit Care 2020; 58:20-26. [PMID: 32279017 DOI: 10.1016/j.jcrc.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Out-of-hospital cardiac arrest (OHCA) is a leading cause of mortality, yet the prediction of its outcome remains challenging. Serum Acyl Carnitines (ACs), a biomarker of beta-oxidation, have been associated with cardiovascular events. We evaluated the association of different AC species with mortality and neurological outcome in a cohort of OHCA patients. MATERIAL AND METHODS We consecutively included OHCA patients in this prospective observational study upon admission to the intensive care unit. We studied the association of thirty-nine different ACs measured at admission and 30-day mortality (primary endpoint), as well as neurological outcome at hospital discharge (secondary endpoint) using the Cerebral Performance Category scale. Multivariate models were adjusted for age, gender, comorbidities and shock markers. RESULTS Of 281 included patients, 137 (48.8%) died within 30 days and of the 144 survivors (51.2%), 15 (10.4%) had poor neurological outcome. While several ACs were associated with mortality, AC C2 had the highest prognostic value for mortality (fully-adjusted odds ratio 4.85 (95%CI 1.8 to 13.06, p < .01), area under curve (AUC) 0.65) and neurological outcome (fully-adjusted odds ratio 3.96 (95%CI 1.47 to 10.66, p < .01), AUC 0.63). CONCLUSIONS ACs are interesting surrogate biomarkers that are associated with mortality and poor neurological outcome in patients after OHCA and may help to improve the understanding of pathophysiological mechanisms and risk stratification.
Collapse
Affiliation(s)
- Madlaina Widmer
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Emanuel B Thommen
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Christoph Becker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Emergency Department, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Katharina Beck
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Alessia M Vincent
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Sebastian Perrig
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Annalena Keller
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Stephan Marsch
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Hans Pargger
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Raoul Sutter
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Kai Tisljar
- Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sabina Hunziker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|