1
|
Snir T, Greenman R, Aricha R, Frankel M, Lawler J, Saffioti F, Pinzani M, Thorburn D, Mor A, Vaknin I. Machine Learning Identifies Key Proteins in Primary Sclerosing Cholangitis Progression and Links High CCL24 to Cirrhosis. Int J Mol Sci 2024; 25:6042. [PMID: 38892228 PMCID: PMC11173115 DOI: 10.3390/ijms25116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, progressive disease, characterized by inflammation and fibrosis of the bile ducts, lacking reliable prognostic biomarkers for disease activity. Machine learning applied to broad proteomic profiling of sera allowed for the discovery of markers of disease presence, severity, and cirrhosis and the exploration of the involvement of CCL24, a chemokine with fibro-inflammatory activity. Sera from 30 healthy controls and 45 PSC patients were profiled with proximity extension assay, quantifying the expression of 2870 proteins, and used to train an elastic net model. Proteins that contributed most to the model were tested for correlation to enhanced liver fibrosis (ELF) score and used to perform pathway analysis. Statistical modeling for the presence of cirrhosis was performed with principal component analysis (PCA), and receiver operating characteristics (ROC) curves were used to assess the useability of potential biomarkers. The model successfully predicted the presence of PSC, where the top-ranked proteins were associated with cell adhesion, immune response, and inflammation, and each had an area under receiver operator characteristic (AUROC) curve greater than 0.9 for disease presence and greater than 0.8 for ELF score. Pathway analysis showed enrichment for functions associated with PSC, overlapping with pathways enriched in patients with high levels of CCL24. Patients with cirrhosis showed higher levels of CCL24. This data-driven approach to characterize PSC and its severity highlights potential serum protein biomarkers and the importance of CCL24 in the disease, implying its therapeutic potential in PSC.
Collapse
Affiliation(s)
- Tom Snir
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | | | | | | | - John Lawler
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Francesca Saffioti
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Douglas Thorburn
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Adi Mor
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Ilan Vaknin
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| |
Collapse
|
2
|
Zhao J, Liu X, Cong K, Chang J, Shan H, Zheng Y. The prognostic significance of LTBP2 for malignant tumors: Evidence based on 11 observational studies. Medicine (Baltimore) 2022; 101:e29207. [PMID: 35512078 PMCID: PMC9276395 DOI: 10.1097/md.0000000000029207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AIMS At present, increasing reports have shown that latent transforming growth factor-β-binding protein 2 (LTBP2) was associated with the prognosis of many types of cancer. We performed rounded analysis to comprehensively analyze and evaluate the prognostic significance of LTBP2 for patients with malignant tumors. METHODS We identified relevant studies by searching database including PubMed, Embase, Cochrane Library, and Web of Science. The odds ratio with its 95% confidence interval (CI) was used to assess the correlation between LTBP2 and clinicopathologic features or overall survival of patients with cancer. Hazard ratio with its 95% CI was used to explore the prognostic risk factors. The analysis was performed and assessed using Review Manager 5.2. RESULTS A total of 11 studies including 2322 participants were included in this systematic review. Pooled results showed that malignant tissues experienced higher incidence of high LTBP2 expression when compared with adjacent or normal tissues. Patients with high LTBP2 expression experienced significantly lower 1-year, 2-year, 3-year, and 4-year overall survival rate, with the pooled odds ratios being 0.26 (95% CI 0.13-0.53; P = .0002), 0.27 (95% CI 0.14-0.50; P < .0001), 0.26 (95% CI 0.13-0.53; P = .0002), and 0.21 (95% CI 0.06-0.73; P = .01) respectively. Univariate analysis showed high LTBP2 expression, tumor node metastasis stage, T stage, and N stage were prognostic factors of patients with tumors. Multivariate analysis indicated high LTBP2 expression was an independent prognostic factor. CONCLUSIONS The present analysis suggested that LTBP2 may have significant association with survival of patients with cancer. High LTBP2 expression was an independent prognostic factor and indicated poor survival.
Collapse
Affiliation(s)
- Jianmeng Zhao
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Xiaokang Liu
- Department of Medical Oncology, Guangrao County People's Hospital, Guangrao, China
| | - Ke Cong
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Jinzhe Chang
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Hongqing Shan
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Yuenan Zheng
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| |
Collapse
|
3
|
Holland CH, Ramirez Flores RO, Myllys M, Hassan R, Edlund K, Hofmann U, Marchan R, Cadenas C, Reinders J, Hoehme S, Seddek AL, Dooley S, Keitel V, Godoy P, Begher-Tibbe B, Trautwein C, Rupp C, Mueller S, Longerich T, Hengstler JG, Saez-Rodriguez J, Ghallab A. Transcriptomic Cross-Species Analysis of Chronic Liver Disease Reveals Consistent Regulation Between Humans and Mice. Hepatol Commun 2021; 6:161-177. [PMID: 34558834 PMCID: PMC8710791 DOI: 10.1002/hep4.1797] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Mouse models are frequently used to study chronic liver diseases (CLDs). To assess their translational relevance, we quantified the similarity of commonly used mouse models to human CLDs based on transcriptome data. Gene‐expression data from 372 patients were compared with data from acute and chronic mouse models consisting of 227 mice, and additionally to nine published gene sets of chronic mouse models. Genes consistently altered in humans and mice were mapped to liver cell types based on single‐cell RNA‐sequencing data and validated by immunostaining. Considering the top differentially expressed genes, the similarity between humans and mice varied among the mouse models and depended on the period of damage induction. The highest recall (0.4) and precision (0.33) were observed for the model with 12‐months damage induction by CCl4 and by a Western diet, respectively. Genes consistently up‐regulated between the chronic CCl4 model and human CLDs were enriched in inflammatory and developmental processes, and mostly mapped to cholangiocytes, macrophages, and endothelial and mesenchymal cells. Down‐regulated genes were enriched in metabolic processes and mapped to hepatocytes. Immunostaining confirmed the regulation of selected genes and their cell type specificity. Genes that were up‐regulated in both acute and chronic models showed higher recall and precision with respect to human CLDs than exclusively acute or chronic genes. Conclusion: Similarly regulated genes in human and mouse CLDs were identified. Despite major interspecies differences, mouse models detected 40% of the genes significantly altered in human CLD. The translational relevance of individual genes can be assessed at https://saezlab.shinyapps.io/liverdiseaseatlas/.
Collapse
Affiliation(s)
- Christian H Holland
- Institute of Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Ricardo O Ramirez Flores
- Institute of Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maiju Myllys
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Reham Hassan
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Karolina Edlund
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Rosemarie Marchan
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Cristina Cadenas
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Jörg Reinders
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Stefan Hoehme
- Institute for Computer Science & Saxonian Incubator for Clinical Research, University of Leipzig, Leipzig, Germany
| | - Abdel-Latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricio Godoy
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Brigitte Begher-Tibbe
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Rupp
- Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan G Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany.,Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Özgür A. Investigation of anticancer activities of STA-9090 (ganetespib) as a second generation HSP90 inhibitor in Saos-2 osteosarcoma cells. J Chemother 2021; 33:554-563. [PMID: 33794753 DOI: 10.1080/1120009x.2021.1908650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Osteosarcoma is common childhood tumour type of the bone. Chemotherapy is the most important step in treatment of osteosarcoma. Despite advanced diagnosis methods and target specific cancer therapeutics, osteosarcoma has still a high mortality rate and a tendency to metastasize. Therefore, new therapeutic strategies are evaluated in osteosarcoma treatment in pre-clinical and clinical studies. In the last ten years, heat shock protein 90 (HSP90) has been important biological target to design target specific cancer drugs. HSP90 play vital roles in proper folding, stabilization and maintenance of oncogenic client proteins in tumorigenesis. Therefore, inhibition of HSP90 has been significant therapeutic aspects in cancer drug design. STA-9090 (ganetespib) is a second generation small molecule HSP90 inhibitor which blocks tumurogenesis in cancer cells. STA-9090 inhibited ATP hydrolysis and protein folding process of HSP90. In this study, STA-9090 decreased Saos-2 cell proliferation and IC50 dose of STA-9090 was found out as 18.71 µM and 10.25 µM at 24 h and 48 h, respectively. STA-9090 inhibited HSP90 ATPase function and disrupted oncogenic client protein folding activity. Also, STA-9090 decreased protein level of the HSP90 in osteosarcoma cells. Expression analysis of osteosarcoma and bone metabolism related genes was performed by RT2 Profiler PCR Array. This study has found the down-regulation of the expression levels of oncogenic genes: DKK1, TWIST1, WNT10B, WNT3A, RANK, RANKL, PTH, FGFR1, FGFR2, LTBP2, IL6, TGFβ1, MMP2 and SPARC genes, in STA-9090 treated Saso-2 cells. Furthermore, expression levels of osteosarcoma related genes, OPG, ERα, ERβ, IL15, BMP2 and BMP7, were found to have increased significantly. Biological activities of STA-9090 on Saos-2 cell line show its potential as a target specific drug to inhibit osteosarcoma and its metastasis.
Collapse
Affiliation(s)
- Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|