1
|
Liu Y, Li Y, Wu Y, Zhao Y, Hu X, Sun C. The long non-coding RNA NEAT1 promotes the progression of human ovarian cancer through targeting miR-214-3p and regulating angiogenesis. J Ovarian Res 2023; 16:219. [PMID: 37986114 PMCID: PMC10662279 DOI: 10.1186/s13048-023-01309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Angiogenesis and metastasis contributes substantially to the poor outcome of patients with ovarian cancer. We aimed to explore the role and mechanisms of the long non-coding RNA NEAT1 (nuclear enriched abundant transcript 1) in regulating angiogenesis and metastasis of human ovarian cancer. NEAT1 expression in human ovarian cancer tissues and cell lines including SKOV-3 and A2780 was investigated through in situ hybridization. Gene knockdown and overexpressing were achieved through lentivirus infection, transfection of plasmids or microRNA mimics. Cell viability was measured with the cell counting kit-8 assay, while apoptosis was determined by flow cytometry. Cell migration and invasion were evaluated by transwell experiments, and protein expression was determined by western blot assays or immunohistochemistry. Duo-luciferase reporter assay was employed to confirm the interaction between NEAT1 and target microRNA. In vivo tumor growth was evaluated in nude mice with xenografted SKOV-3/A2780 cells, and blood vessel formation in tumor was examined by histological staining. RESULTS NEAT1 was highly expressed in ovarian cancer tissues of patients and cell lines. MiR-214-3p was identified as a sponging target of NEAT1, and they antagonizedeach other in a reciprocal manner. NEAT1-overexpressing SKOV-3 and A2780 cells had significantly increased proliferation, reduced apoptosis, and augmented abilities of migration and invasion, while cells with NEAT1-knockdown displayed markedly attenuated traits of malignancies. Additionally, the levels of NEAT1 appeared to be positively correlated with the expression levels of angiogenesis-related molecules, including Semaphorin 4D (Sema4D), Sema4D receptor Plexin B1, T-lymphoma invasion and metastasis-inducing protein-1 (Tiam1), and Rho-like GTPases Rac1/2/3. In the xenograft mouse model, more NEAT1 expression resulted in faster in vivo tumor growth, more blood vessel formation in tumor tissues, as well as higher expression levels of angiogenesis-related molecules and CD31. CONCLUSIONS NEAT1 promotes angiogenesis and metastasis in human ovarian cancer. NEAT1 and miR-214-3p are promising targets for developing therapeutics to treat human ovarian cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Yan Li
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yanzhi Wu
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yiyue Zhao
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xi Hu
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chunyi Sun
- Department of Gynecology, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
2
|
Li W, Huang G, Wei J, Cao H, Jiang G. ALKBH5 inhibits thyroid cancer progression by promoting ferroptosis through TIAM1-Nrf2/HO-1 axis. Mol Cell Biochem 2022; 478:729-741. [PMID: 36070054 DOI: 10.1007/s11010-022-04541-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
As a critical catalytic subunit of N6-methyladenosine (m6A) modification in messenger RNA, ALKBH5 has been reported to affect the progression of numerous tumors. However, the functions and mechanisms of ALKBH5 in thyroid cancer remain largely unknown. Relative mRNA and protein levels in thyroid cancer tissues and cells were detected by qRT-PCR and western blot, respectively. The proliferation and viability were evaluated using colony formation and CCK-8 assays. Intracellular iron level was measured by an iron colorimetric assay kit. ROS level was determined using CellRox Green reagent. TIAM1 mRNA m6A level was detected by MeRIP. Xenograft tumor growth was performed to examine the role of ALKBH5 in thyroid tumor growth in vivo. ALKBH5 was decreased in thyroid cancer tissues and cells. ALKBH5 overexpression inhibited thyroid cancer cell proliferation and increased the levels of Fe2+ and ROS and reduced the proteins expression of GPX4 and SLC7A11. Furthermore, overexpression of ALKBH5 inhibited TIAM1 expression by m6A modification, and overexpression of TIAM1 reversed the regulatory of oe-ALKBH5 on cell proliferation and ferroptosis in thyroid cancer. In addition, TIAM1 was elevated in thyroid cancer, and TIAM1 knockdown repressed thyroid cancer cell proliferation and promoted ferroptosis through regulating Nrf2/HO-1 axis. In addition, in vivo evidences also showed that ALKBH5 suppressed thyroid cancer progression by decreasing the m6A level of TIAM1. Our findings suggested that ALKBH5 inhibited thyroid cancer progression by inducing ferroptosis through m6A-TIAM1-Nrf2/HO-1 axis, suggesting ALKBH5 might be a potential target molecule for the treatment and diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.,Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Guo Huang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Hong Cao
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Yue Y, Wu K, Qian W, Zhu Z, Zhang S, Zhang W, Zhang W, Wu S, Li L, Wu Z, Ma Q, Xie K, Wang Z. RASAL2 mediated the enhancement of YAP1/TIAM1 signaling promotes malignant phenotypes of pancreatic ductal adenocarcinoma. Int J Biol Sci 2022; 18:4245-4259. [PMID: 35844783 PMCID: PMC9274491 DOI: 10.7150/ijbs.72204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high incidence of metastasis and dismal prognosis. As a member of Gas-Gap gene, RASAL2 is involved in the hydrolysis of RAS-GTP to RAS-GDP and abnormal expression in human cancers. Here we firstly described the function of RASAL2 on PDAC to enrich the knowledge of RAS family.We interestingly observed that RASAL2 expression was upregulated in PDAC at both mRNA and protein levels, and high expression of RASAL2 predicted a poor prognosis in PDAC patients. Additionally, RASAL2 promoted malignant behaviors of PDAC in vitro and in vivo. To determine the mechanistic roles of RASAL2 signaling and its potential as a therapeutic target in PDAC, we clarified that RASAL2 could accumulate the TIAM1 expression in different level through inhibiting YAP1 phosphorylation, increased TIAM1 mRNA expression and suppressed ubiquitination of TIAM1 protein. In conclusion, RASAL2 enhances YAP1/TIAM1 signaling and promotes PDAC development and progression.
Collapse
Affiliation(s)
- Yangyang Yue
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kaijie Wu
- Department of Urology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weifan Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li Li
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
4
|
Ciarlantini MS, Barquero A, Bayo J, Wetzler D, Dodes Traian MM, Bucci HA, Fiore EJ, Gandolfi Donadío L, Defelipe L, Turjanski A, Ramírez JA, Mazzolini G, Comin MJ. Development of an Improved Guanidine-Based Rac1 Inhibitor with in vivo Activity against Non-Small Cell Lung Cancer. ChemMedChem 2021; 16:1011-1021. [PMID: 33284505 DOI: 10.1002/cmdc.202000763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Indexed: 12/20/2022]
Abstract
The Rho GTPase Rac1 is involved in the control of cytoskeleton reorganization and other fundamental cellular functions. Aberrant activity of Rac1 and its regulators is common in human cancer. In particular, deregulated expression/activity of Rac GEFs, responsible for Rac1 activation, has been associated to a metastatic phenotype and drug resistance. Thus, the development of novel Rac1-GEF interaction inhibitors is a promising strategy for finding new preclinical candidates. Here, we studied structure-activity relationships within a new family of N,N'-disubstituted guanidine as Rac1 inhibitors. We found that compound 1D-142, presents superior antiproliferative activity in human cancer cell lines and higher potency as Rac1-GEF interaction inhibitor in vitro than parental compounds. In addition, 1D-142 reduces Rac1-mediated TNFα-induced NF-κB nuclear translocation during cell proliferation and migration in NSCLC. Notably, 1D-142 allowed us to show for the first time the application of a Rac1 inhibitor in a lung cancer animal model.
Collapse
Affiliation(s)
- Matías S Ciarlantini
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, San Martin Buenos Aires, Argentina
| | - Andrea Barquero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, B1630FHB, Derqui-Pilar, Argentina
| | - Diana Wetzler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín M Dodes Traian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hernán A Bucci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Esteban J Fiore
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, B1630FHB, Derqui-Pilar, Argentina
| | - Lucía Gandolfi Donadío
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, San Martin Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, B1650WAB, San Martin, Buenos Aires, Argentina
| | - Lucas Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adrián Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier A Ramírez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, B1630FHB, Derqui-Pilar, Argentina.,Liver Unit, Hospital Universitario Austral, B1629AHJ, Derqui-Pilar, Buenos Aires, Argentina
| | - Maria J Comin
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, San Martin Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, B1650WAB, San Martin, Buenos Aires, Argentina
| |
Collapse
|
5
|
Maltas J, Reed H, Porter A, Malliri A. Mechanisms and consequences of dysregulation of the Tiam family of Rac activators in disease. Biochem Soc Trans 2020; 48:2703-2719. [PMID: 33200195 DOI: 10.1042/bst20200481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The Tiam family proteins - Tiam1 and Tiam2/STEF - are Rac1-specific Guanine Nucleotide Exchange Factors (GEFs) with important functions in epithelial, neuronal, immune and other cell types. Tiam GEFs regulate cellular migration, proliferation and survival, mainly through activating and directing Rac1 signalling. Dysregulation of the Tiam GEFs is significantly associated with human diseases including cancer, immunological and neurological disorders. Uncovering the mechanisms and consequences of dysregulation is therefore imperative to improving the diagnosis and treatment of diseases. Here we compare and contrast the subcellular localisation and function of Tiam1 and Tiam2/STEF, and review the evidence for their dysregulation in disease.
Collapse
Affiliation(s)
- Joe Maltas
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Hannah Reed
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| |
Collapse
|
6
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
7
|
Myoblast Migration and Directional Persistence Affected by Syndecan-4-Mediated Tiam-1 Expression and Distribution. Int J Mol Sci 2020; 21:ijms21030823. [PMID: 32012800 PMCID: PMC7037462 DOI: 10.3390/ijms21030823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.
Collapse
|