1
|
Cao M, Wang X, Liu F, Xue K, Dai Y, Zhou Y. A three-component multi-b-value diffusion-weighted imaging might be a useful biomarker for detecting microstructural features in gliomas with differences in malignancy and IDH-1 mutation status. Eur Radiol 2023; 33:2871-2880. [PMID: 36346441 DOI: 10.1007/s00330-022-09212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The purpose of the study was to explore the performance of a three-component diffusion model in evaluating the degree of malignancy and isocitrate dehydrogenase 1 (IDH-1) gene type of gliomas. METHODS Overall, 60 patients with gliomas were enrolled. The intermediate and perfusion-related diffusion coefficients (Dint and Dp) and fractions of strictly limited, intermediate, and perfusion-related diffusion (Fvery-slow, Fint, and Fp) were obtained with a three-component diffusion model. Parameters were also obtained from a diffusion kurtosis model and mono- and biexponential models. All parameters were compared between different tumor grades and IDH-1 gene types. Diagnostic performance and logistic regression analyses were performed. RESULTS High-grade gliomas (HGGs) had significantly higher Fint, Fvery-slow, and Dp values but significantly lower Fp and Dint values than low-grade gliomas (LGGs), and Fint and Fp differed significantly among grade II, III, and IV gliomas (p < 0.05 for all). Fint achieved the highest AUC of 0.872 in differentiating between LGGs and HGGs. Logistic regression analysis revealed that in each model, Fint, diffusion coefficient (D), apparent diffusion coefficient (ADC), mean diffusivity (MD), and mean kurtosis (MK) were associated with glioma grading. After multiple regression analysis, Fint remained the only differentiator. Additionally, Fint and Fp showed significant differences between IDH-1 mutated and IDH-1 wild-type gliomas (p = 0.007 and 0.01, respectively). CONCLUSIONS The three-component DWI model served as a useful biomarker for detecting microstructural features in gliomas with different grades and IDH-1 mutation statuses. KEY POINTS • The three-component model enables the estimation of an intermediate diffusion component. • The three-component model performed better than the other models in glioma grading and genotyping. • Fint was useful in evaluating the grade and genotype of gliomas.
Collapse
Affiliation(s)
- Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd., Shanghai, 200127, China
| | - Xiaoqing Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd., Shanghai, 200127, China
| | - Fang Liu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd., Shanghai, 200127, China
| | - Ke Xue
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd., Shanghai, 200127, China.
| |
Collapse
|
2
|
Li S, Zheng Y, Sun W, Lasič S, Szczepankiewicz F, Wei Q, Han S, Zhang S, Zhong X, Wang L, Li H, Cai Y, Xu D, Li Z, He Q, van Westen D, Bryskhe K, Topgaard D, Xu H. Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition (DIVIDE) imaging. Eur Radiol 2021; 31:8197-8207. [PMID: 33914116 DOI: 10.1007/s00330-021-07959-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the potential of diffusional variance decomposition (DIVIDE) for grading, molecular feature classification, and microstructural characterization of gliomas. MATERIALS AND METHODS Participants with suspected gliomas underwent DIVIDE imaging, yielding parameter maps of fractional anisotropy (FA), mean diffusivity (MD), anisotropic mean kurtosis (MKA), isotropic mean kurtosis (MKI), total mean kurtosis (MKT), MKA/MKT, and microscopic fractional anisotropy (μFA). Tumor type and grade, isocitrate dehydrogenase (IDH) 1/2 mutant status, and the Ki-67 labeling index (Ki-67 LI) were determined after surgery. Statistical analysis included 33 high-grade gliomas (HGG) and 17 low-grade gliomas (LGG). Tumor diffusion metrics were compared between HGG and LGG, among grades, and between wild and mutated IDH types using appropriate tests according to normality assessment results. Receiver operating characteristic and Spearman correlation analysis were also used for statistical evaluations. RESULTS FA, MD, MKA, MKI, MKT, μFA, and MKA/MKT differed between HGG and LGG (FA: p = 0.047; MD: p = 0.037, others p < 0.001), and among glioma grade II, III, and IV (FA: p = 0.048; MD: p = 0.038, others p < 0.001). All diffusion metrics differed between wild-type and mutated IDH tumors (MKI: p = 0.003; others: p < 0.001). The metrics that best discriminated between HGG and LGGs and between wild-type and mutated IDH tumors were MKT and FA respectively (area under the curve 0.866 and 0.881). All diffusion metrics except FA showed significant correlation with Ki-67 LI, and MKI had the highest correlation coefficient (rs = 0.618). CONCLUSION DIVIDE is a promising technique for glioma characterization and diagnosis. KEY POINTS • DIVIDE metrics MKI is related to cell density heterogeneity while MKA and μFA are related to cell eccentricity. • DIVIDE metrics can effectively differentiate LGG from HGG and IDH mutation from wild-type tumor, and showed significant correlation with the Ki-67 labeling index. • MKI was larger than MKA which indicates predominant cell density heterogeneity in gliomas. • MKA and MKI increased with grade or degree of malignancy, however with a relatively larger increase in the cell eccentricity metric MKA in relation to the cell density heterogeneity metric MKI.
Collapse
Affiliation(s)
- Sirui Li
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | | | - Wenbo Sun
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | | | | | - Qing Wei
- United Imaging Healthcare, Shanghai, China
| | | | | | - Xiaoli Zhong
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Liang Wang
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Huan Li
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuxiang Cai
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dan Xu
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhiqiang Li
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Qiang He
- United Imaging Healthcare, Shanghai, China
| | | | | | | | - Haibo Xu
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Comparison of Amino Acid PET to Advanced and Emerging MRI Techniques for Neurooncology Imaging: A Systematic Review of the Recent Studies. Mol Imaging 2021; 2021:8874078. [PMID: 34194287 PMCID: PMC8205602 DOI: 10.1155/2021/8874078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Standard neuroimaging protocols for brain tumors have well-known limitations. The clinical use of additional modalities including amino acid PET (aaPET) and advanced MRI (aMRI) techniques (including DWI, PWI, and MRS) is emerging in response to the need for more accurate detection of brain tumors. In this systematic review of the past 2 years of the literature, we discuss the most recent studies that directly compare or combine aaPET and aMRI for brain tumor imaging. Methods A PubMed search was conducted for human studies incorporating both aaPET and aMRI and published between July 2018 and August 2020. Results A total of 22 studies were found in the study period. Recent studies of aaPET with DWI showed a superiority of MET, FET, FDOPA, and AMT PET for detecting tumor, predicting recurrence, diagnosing progression, and predicting survival. Combining modalities further improved performance. Comparisons of aaPET with PWI showed mixed results about spatial correlation. However, both modalities were able to detect high-grade tumors, identify tumor recurrence, differentiate recurrence from treatment effects, and predict survival. aaPET performed better on these measures than PWI, but when combined, they had the strongest results. Studies of aaPET with MRS demonstrated that both modalities have diagnostic potential but MET PET and FDOPA PET performed better than MRS. MRS suffered from some data quality issues that limited analysis in two studies, and, in one study that combined modalities, overall performance actually decreased. Four recent studies compared aaPET with emerging MRI approaches (such as CEST imaging, MR fingerprinting, and SISTINA), but the initial results remain inconclusive. Conclusions aaPET outperformed the aMRI imaging techniques in most recent studies. DWI and PWI added meaningful complementary data, and the combination of aaPET with aMRI yielded the best results in most studies.
Collapse
|