1
|
Dufresne A, Pokras S, Meurgey A, Chabaud S, Toulmonde M, Bompas E, Le Cesne A, Robin YM, Duffaud F, Valentin T, El Zein S, Leroux A, Dubray-Longeras P, Firmin N, de Pinieux G, Noal S, Delfour C, Bollard J, Tonon L, Biette A, Gadot N, Attignon V, Jean-Denis M, Woessner M, Klohe E, Thayaparan T, Eleftheriadou I, Blouch K, Nathenson MJ, Blay JY. Investigating the prognostic impact of NY-ESO-1 expression and HLA subtypes in metastatic synovial sarcoma. ESMO Open 2024; 9:103645. [PMID: 39153316 PMCID: PMC11381441 DOI: 10.1016/j.esmoop.2024.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND To better understand the importance of the New York esophageal squamous cell carcinoma 1 (NY-ESO-1) and human leukocyte antigen (HLA) subtypes in treatment decision-making, further investigation of their prevalence and prognostic impact among patients with metastatic synovial sarcoma (mSS) is needed. PATIENTS AND METHODS This was a retrospective clinico-biological cohort study of adults with mSS. Patient data were collected from the French Sarcoma Group NetSARC database and supplemented by electronic medical records. Primary tumor samples were collected and analyzed for NY-ESO-1 expression by immunohistochemistry (IHC) and HLA-A∗02 status by RNA sequencing (RNA-seq). The primary cohort included patients with available primary tumor samples; the impact of a larger sample size was explored by including patients who had either a primary or metastatic sample (termed the exploratory cohort). P values are provided for descriptive purposes. RESULTS In 92 patients with primary tumor samples, ∼25% (n = 23) were positive for NY-ESO-1 and HLA-A∗02 expression (dual positive). Among 106 patients with IHC data, 61% (n = 65) were NY-ESO-1 positive, and among 94 patients with RNA-seq data, 45% (n = 42) were HLA-A∗02 positive. The median overall survival (OS) for positive versus negative NY-ESO-1 status was 35.3 and 21.7 months, respectively (unadjusted P = 0.0428). We observed no difference in median OS for HLA-A∗02-positive versus -negative and dual-positive patients versus others (both unadjusted P > 0.05). Multivariate analyses of OS showed no prognostic impact for NY-ESO-1 among primary tumor samples and in the exploratory cohort. However, in the latter we observed an association between NY-ESO-1 expression and OS in the first-line (P = 0.0041) but not in the second-line setting. CONCLUSIONS The primary tumor cohort showed no association between NY-ESO-1 expression and OS (including stratification by HLA-A∗02 subtype and treatment line) when adjusting for important prognostic factors, possibly due to small sample sizes.
Collapse
Affiliation(s)
- A Dufresne
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
| | | | - A Meurgey
- Department of Pathology, Centre Léon Bérard, Lyon
| | - S Chabaud
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon
| | - M Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux
| | - E Bompas
- Department of Medicine, Institut Cancérologie de l'Ouest, Maine Et Loire
| | - A Le Cesne
- Department of Medicine, Gustave Roussy, Villejuif
| | - Y-M Robin
- Department of Biopathology, Centre Oscar Lambret, Lille
| | - F Duffaud
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Marseille, Hôpital La Timone and Aix-Marseille University, Marseille
| | - T Valentin
- Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse
| | - S El Zein
- Department of Pathology, Institut Curie and Paris Sciences Lettres University, Île-de-France
| | - A Leroux
- Department of Biopathology, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy
| | - P Dubray-Longeras
- Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand
| | - N Firmin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Institut de Recherche en Cancérologie de Montpellier U1194, Université de Montpellier, Montpellier
| | - G de Pinieux
- Department of Pathology, Université de Tours, Tours
| | - S Noal
- Centre François Baclesse, Caen
| | - C Delfour
- Department for Cell and Tissue Pathobiology of Tumor, Hospital Saint Eloi, Montpellier
| | - J Bollard
- Department of Research and Innovation, Centre Léon Bérard, Lyon
| | - L Tonon
- Plateforme de Bioinformatique Gilles Thomas, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon
| | - A Biette
- Evaluation Médicale des Sarcomes, Centre Léon Bérard, Lyon
| | - N Gadot
- Research Pathology Platform, Centre Léon Bérard, Lyon, France
| | - V Attignon
- Department of Research and Innovation, Centre Léon Bérard, Lyon
| | - M Jean-Denis
- Evaluation Médicale des Sarcomes, Centre Léon Bérard, Lyon
| | | | | | | | | | | | | | - J-Y Blay
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
2
|
Kawada J, Saito T, Kurokawa Y, Kawabata R, Takeno A, Takeoka T, Nose Y, Wada H, Eguchi H, Doki Y. Serum NY-ESO-1 and p53 antibodies as useful tumor markers in gastric cancer. Ann Gastroenterol Surg 2024; 8:243-250. [PMID: 38455491 PMCID: PMC10914697 DOI: 10.1002/ags3.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 03/09/2024] Open
Abstract
Purpose The NY-ESO-1 antigen is highly immunogenic and often spontaneously induces an immune response in patients with cancer. We conducted a large-scale multicenter cohort study to investigate the utility of serum NY-ESO-1 and p53 antibodies as predictive markers for the postoperative recurrence of gastric cancer. Here, we examined the usefulness of pre-treatment NY-ESO-1 and p53 antibodies as tumor markers for the diagnosis of gastric cancer in combination with carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Methods A total of 1031 patients with cT3-4 gastric cancer were enrolled in the study. NY-ESO-1 and p53 antibodies were assessed prior to treatment. The positivity of NY-ESO-1 and p53 antibodies, CEA, and CA19-9 was evaluated before treatment. Results Serum NY-ESO-1 and p53 antibodies were positive in 12.6% and 18.1% of the patients, respectively. Positive NY-ESO-1 antibody response was correlated with male gender, higher cStage, and upper tumor location. However, a positive p53 antibody response was not associated with tumor factors. The combination of NY-ESO-1 or p53 antibody response with CEA and CA19-9, or the 4-factors, was positive in 45.1%, 49.6%, and 53.8% of patients, respectively. Moreover, the 4-factor combination was able to detect >60% of cStage III-IV diseases, which was 14% higher than that with the combination of CEA and CA19-9. Conclusion The combination of NY-ESO-1 and p53 antibody responses to CEA and CA19-9 increases the diagnostic accuracy of gastric cancer. Serum NY-ESO-1 and p53 antibodies may be useful tumor markers for gastric cancer.
Collapse
Affiliation(s)
- Junji Kawada
- Department of Gastroenterological SurgeryOsaka General Medical CenterOsakaJapan
- Department of SurgeryKaizuka City HospitalOsakaJapan
| | - Takuro Saito
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Yukinori Kurokawa
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | | | - Atsushi Takeno
- Department of SurgeryKansai Rosai HospitalAmagasakiJapan
| | - Tomohira Takeoka
- Department of SurgeryHyogo Prefectural Nishinomiya HospitalNishinomiyaJapan
| | - Yohei Nose
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hisashi Wada
- Department of Clinical Research in Tumor ImmunologyOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | | |
Collapse
|
3
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
4
|
Heterogeneity and Functions of Tumor-Infiltrating Antibody Secreting Cells: Lessons from Breast, Ovarian, and Other Solid Cancers. Cancers (Basel) 2022; 14:cancers14194800. [PMID: 36230721 PMCID: PMC9563085 DOI: 10.3390/cancers14194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary B cells are gaining increasing recognition as important contributors to the tumor microenvironment, influencing, positively or negatively, tumor growth, patient survival, and response to therapies. Antibody secreting cells (ASCs) constitute a variable fraction of tumor-infiltrating B cells in most solid tumors, and they produce tumor-specific antibodies that can drive distinct immune responses depending on their isotypes and specificities. In this review, we discuss the current knowledge of the heterogeneity of ASCs infiltrating solid tumors and how both their canonical and noncanonical functions shape antitumor immunity, with a special emphasis on breast and ovarian cancers. Abstract Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.
Collapse
|
5
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
6
|
Yu G, Wang W, He X, Xu J, Xu R, Wan T, Wu Y. Synergistic Therapeutic Effects of Low Dose Decitabine and NY-ESO-1 Specific TCR-T Cells for the Colorectal Cancer With Microsatellite Stability. Front Oncol 2022; 12:895103. [PMID: 35774131 PMCID: PMC9239344 DOI: 10.3389/fonc.2022.895103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Patients of colorectal cancer (CRC) with microsatellite stability (MSS) show poor clinical response and little beneficial result from the immune-checkpoint inhibitors, due to the ‘cold’ tumor microenvironment. Meanwhile, decitabine can drive the ‘cold’ microenvironment towards ‘hot’ in multiple ways, such as upregulating the tumor associated antigen (TAA) and human leukocyte antigen (HLA) molecular. NY-ESO-1, one of the most important TAAs, can be observably induced in tumors by low dose decitabine, and present itself as ideal targets for antigen specific T cell receptor engineered T (TCR-T) cells. We innovatively used a synergistic tactic, combining decitabine and NY-ESO-1 specific TCR-T cells, for fighting the MSS CRC. Firstly, we confirmed the lysing effect of the NY-ESO-1 TCR-T cells on the NY-ESO-1+ and HLA-A2+ cells in vitro and in vivo. In A375 tumor-bearing mice, the results showed that NY-ESO-1 TCR-T cell therapy could inhibit A375 tumor growth and prolonged the survival time. Furthermore, the synergistic effect of decitabine and NY-ESO-1 TCR-T cells was shown to induce an even higher percentage of tumor cells being lysed in vitro than other control groups, and more potent tumor inhibition and longer survival time were observed in vivo. The innovative synergistic therapeutic strategy of decitabine and TCR-T cells for the CRC with MSS may be also effective in the treatment of other epithelial malignancies. Decitabine may likewise be adopted in combination with other cellular immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Wan
- *Correspondence: Tao Wan, ; Yanfeng Wu,
| | | |
Collapse
|
7
|
Roddy H, Meyer T, Roddie C. Novel Cellular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:504. [PMID: 35158772 PMCID: PMC8833505 DOI: 10.3390/cancers14030504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Most patients present with advanced disease, and current gold-standard management using tyrosine kinase inhibitors or immune checkpoint inhibitors (ICIs) offers modest clinical benefit. Cellular immune therapies targeting HCC are currently being tested in the laboratory and in clinical trials. Here, we review the landscape of cellular immunotherapy for HCC, defining antigenic targets, outlining the range of cell therapy products being applied in HCC (such as CAR-T and TCR-T), and exploring how advanced engineering solutions may further enhance this therapeutic approach.
Collapse
Affiliation(s)
- Harriet Roddy
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
| | - Tim Meyer
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Claire Roddie
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
| |
Collapse
|
8
|
Integration of IgG and IgA autoantibodies for early diagnosis of hepatocellular carcinoma. Clin Chim Acta 2021; 523:423-429. [PMID: 34728178 DOI: 10.1016/j.cca.2021.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Autoantibodes against tumor-associated antigens (TAAs) have been recommended for the early diagnosis of malignancies. In this study, we intend to comprehensively evaluate the performances of four autoantibodies including anti-p53, CTAG1A, TIF1γ-IgG and anti-TIF1γ-IgA for the early diagnosis of hepatocellular carcinoma (HCC), and then determine an optimal panel of autoantibodies for early HCC diagnosis. METHODS The performances of four autoantibodies were evaluated by enzyme-linked immunosorbent assay (ELISA) for the early diagnosis of HCC with 380 retrospective serum samples. A training set comprised of 92 patients with early HCC, 72 patients with hepatic benign lesions (HBL), and 86 healthy controls (HC) was used to develop the predictive model for early HCC. And then, data obtained from an independent validation set was applied to evaluate and validate the predictive model to distinguish the early HCC from the controls (HBL + HC). RESULTS The results of the training set showed the levels and positive rates of four autoantibodies in early HCC group were significantly higher than that in HBL group/HC group (P < 0.01), of which anti-p53-IgG exhibited the highest AUC of 0.679, with 33.7% sensitivity at 93.7% specificity; the panel comprised of four autoantibodies showed the highest AUC for the patients with early HCC, up to 0.814 (95%CI 0.760-0.860), with 72.8% sensitivity at 84.2% specificity among all possible combinations of four autoantibodies. Additionally, this four-autoantibody panel showed the AUC of 0.824, 70.8% sensitivity at 84.2% specificity in the validation set. CONCLUSIONS Serum IgG autoantibodies against p53, CTAG1A and TIF1γ, and IgA autoantibody against TIF1γ present the diagnostic value for early HCC, of which anti-p53-IgG is a preferable biomarker. The panel comprised of four autoantibodies might contribute to early HCC diagnosis.
Collapse
|
9
|
Yang P, Meng M, Zhou Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188558. [PMID: 33933558 DOI: 10.1016/j.bbcan.2021.188558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence shows that numerous cancer-testis antigens (CTAs) are uniquely overexpressed in various types of cancer and most CTAs are oncogenic. Overexpression of oncogenic CTAs promotes carcinogenesis, cancer metastasis, and drug resistance. Oncogenic CTAs are generally associated with poor prognosis in cancer patients and are an important hallmark of cancer, making them a crucial target for cancer immunotherapy. CTAs-targeted antibodies, vaccines, and chimeric antigen receptor-modified T cells (CAR-T) have recently been used in cancer treatment and achieved promising outcomes in the preclinical and early clinical trials. However, the efficacy of current CTA-targeted therapeutics is either moderate or low in cancer therapy. CTA-targeted cancer immunotherapy is facing enormous challenges. Several critical scientific problems need to be resolved: (1) the antigen presentation function of MHC-I protein is usually deficient in cancer patients, so that very low amounts of intracellular CTA epitopes are presented to tumor cell membrane surface, leading to weak immune response and subsequent immunity to CTAs; (2) various immunosuppressive cells are rich in tumor tissues leading to diminished tumor immunity; (3) the tumor tissue microenvironment markedly reduces the efficacy of cancer immunotherapy. In the current review paper, the authors propose new strategies and approaches to overcome the barriers of CTAs-targeted immunotherapy and to develop novel potent immune therapeutics against cancer. Finally, we highlight that the oncogenic CTAs have high tumor specificity and immunogenicity, and are sensible targets for cancer immunotherapy. We predict that CTAs-targeted immunotherapy will bring about breakthroughs in cancer therapy in the near future.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
10
|
Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers (Basel) 2021; 13:cancers13020271. [PMID: 33450845 PMCID: PMC7828372 DOI: 10.3390/cancers13020271] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality of hepatocellular carcinoma (HCC) is quickly increasing worldwide. In unresectable HCC, the cornerstone of systemic treatments is switching from tyrosine kinase inhibitors to immune checkpoints inhibitors (ICI). Next to ICI, adoptive cell transfer represents another promising field of immunotherapy. Targeting tumor associated antigens such as alpha-fetoprotein (AFP), glypican-3 (GPC3), or New York esophageal squamous cell carcinoma-1 (NY-ESO-1), T cell receptor (TCR) engineered T cells and chimeric antigen receptors (CAR) engineered T cells are emerging as potentially effective therapies, with objective responses reported in early phase trials. In this review, we address the biological rationale of TCR/CAR engineered T cells in advanced HCC, their mechanisms of action, and results from recent clinical trials.
Collapse
|