1
|
Raut S, Khambata K, Singh D, Balasinor NH. Dopamine receptor D2 regulates genes involved in germ cell movement and sperm motility in rat testes†. Biol Reprod 2024; 110:377-390. [PMID: 37956402 DOI: 10.1093/biolre/ioad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023] Open
Abstract
The function of dopamine receptor D2 (D2R) is well associated with sperm motility; however, the physiological role of D2R present on testicular cells remains elusive. The aim of the present study is to delineate the function of testicular D2R. Serum dopamine levels were found to decrease with age, whereas testicular D2R expression increased. In rat testicular sections, D2R immunolabeling was observed in interstitial cells, spermatogonia, spermatocytes and mature elongated spermatids, whereas tyrosine hydroxylase immunolabeling was selectively detected in Leydig cells. In vitro seminiferous tubule culture following bromocriptine (D2R agonist) treatment resulted in decreased cAMP levels. Microarray identified 1077 differentially expressed genes (511 up-regulated, 566 down-regulated). The majority of differentially expressed genes were present in post-meiotic cells including early and late spermatids, and sperm. Gene ontology elucidated processes related to extra-cellular matrix to be enriched and was supported by differential expression of various collagens and laminins, thereby indicating a role of dopamine in extra-cellular matrix integrity and transport of spermatids across the seminiferous epithelium. Gene ontology and enrichment map also highlighted cell/sperm motility to be significantly enriched. Therefore, genes involved in sperm motility functions were further validated by RT-qPCR. Seven genes (Akap4, Ccnyl1, Iqcf1, Klc3, Prss55, Tbc1d21, Tl18) were significantly up-regulated, whereas four genes (Dnah1, Dnah5, Clxn, Fsip2) were significantly down-regulated by bromocriptine treatment. The bromocriptine-stimulated reduction in seminiferous tubule cyclic AMP and associated changes in spermatid gene expression suggests that dopamine regulates both spermatogenesis and spermiogenesis within the seminiferous epithelium, and spermatozoa motility following spermiation, as essential processes for fertility.
Collapse
Affiliation(s)
- Sanketa Raut
- Department of Neuroendocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Kushaan Khambata
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Dipty Singh
- Department of Neuroendocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|
2
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
3
|
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: A systematic review and a meta-analysis. Andrology 2022; 10:1484-1499. [PMID: 36057791 DOI: 10.1111/andr.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynein-related genes may have a role in the etiology of male infertility, particularly in cases of impaired sperm motility. OBJECTIVES The goal of this review is to compile a list of the most important dynein-related candidate genes that may contribute to male factor infertility. MATERIALS AND METHODS Databases were searched using the keywords "dynein", "male", "infertility" and by applying strict inclusion criteria. A meta-analysis was also performed by using the eligible case-control studies. The odd ratios (OR), the Z-test score, and the level of significance were determined using a fixed model with a p value of 0.05. Funnel plots were used to check for publication bias. RESULTS There were 35 studies that met the inclusion criteria. There were a total of fifteen genes responsible for the production of dynein structural proteins, the production of dynein assembling factors, and potentially associated with male infertility. A total of five case-control studies were eligible for inclusion in the meta-analysis. Variants in the dynein-related genes were linked to an increased the risk of male infertility (OR = 21.52, 95% Confidence Interval (CI) 8.34 - 55.50, Z test = 6.35, p < 0.05). The percentage of heterogeneity, I2 , was 47.00%. The lack of variants in the dynein genes was an advantage and this was statistically significant. DISCUSSION The results from the present review illustrate that pathogenic variants in genes both for dynein synthesis and for dynein assembly factors could be associated with isolated cases of male infertility without any other symptoms. CONCLUSIONS The genes addressed in this study, which are involved in both the production and assembly of dynein, could be used as molecular targets for future research into the etiology of sperm motility problems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Tzar Osvoboditel Str 84b, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
4
|
Liu Z, Wang C, Ni F, Yang F, Wei H, Li T, Wang J, Wang B. Novel compound heterozygous variants of DNAH17 in a Chinese infertile man with multiple morphological abnormalities of sperm flagella. Andrologia 2022; 54:e14553. [PMID: 35932098 DOI: 10.1111/and.14553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/18/2022] Open
Abstract
Multiple morphological abnormalities of the sperm flagellum (MMAF) have been reported to be an important cause of male infertility and reflect a heterogeneous genetic disorder. Previous studies have identified dozens of candidate pathogenic genes for MMAF, but the aetiology in approximately 50% of cases remains unexplained. The present study aimed to identify novel potentially pathogenic gene variants of MMAF. A Chinese family with a 32-year-old infertile proband presenting with MMAF was recruited, and sperm morphology of the patient was examined by Papanicolaou staining. Whole exome sequencing was performed on the proband and Sanger sequencing was used to identify genetic variants in the family. The frequencies of variants were assessed using public databases and the effects on protein structure and function were predicted by online bioinformatics tools. The patient exhibited asthenozoospermia and a MMAF phenotype. Novel compound heterozygous variants (c.5368C > T, p.R1790C and c.13183C > T, p.R4395W) of the DNAH17 gene were identified in the patient, and showed autosomal recessive inheritance in this family. These variants were very rare in the GnomAD database. The two mutated amino acids were located in a highly conserved region of the DNAH17 protein. In silico analysis revealed that the compound heterozygous variants may compromise the function of DNAH17. Our findings expand upon the spectrum of pathogenic DNAH17 variants that are responsible for MMAF, and provide new knowledge for genetic counselling of male infertility due to MMAF.
Collapse
Affiliation(s)
- Zhonglin Liu
- Center of Reproductive medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute of Family Planning, Beijing, China.,The Second Children & Women's Healthcare of Jinan City, Jinan, China
| | - Feng Ni
- Medicine Centre, 901st hospital of PLA Joint Logistic Support Force, Hefei, People's Republic of China
| | - Fenglian Yang
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, China
| | - Han Wei
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Tengyan Li
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Junli Wang
- Center of Reproductive medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China.,Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute of Family Planning, Beijing, China.,NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Beijing, China
| |
Collapse
|
5
|
In Silico Identification of lncRNAs Regulating Sperm Motility in the Turkey (Meleagris gallopavo L.). Int J Mol Sci 2022; 23:ijms23147642. [PMID: 35887003 PMCID: PMC9324027 DOI: 10.3390/ijms23147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts not translated into proteins with a length of more than 200 bp. LncRNAs are considered an important factor in the regulation of countless biological processes, mainly through the regulation of gene expression and interactions with proteins. However, the detailed mechanism of interaction as well as functions of lncRNAs are still unclear and therefore constitute a serious research challenge. In this study, for the first time, potential mechanisms of lncRNA regulation of processes related to sperm motility in turkey were investigated and described. Customized bioinformatics analysis was used to detect and identify lncRNAs, and their correlations with differentially expressed genes and proteins were also investigated. Results revealed the expression of 863 new/unknown lncRNAs in ductus deferens, testes and epididymis of turkeys. Moreover, potential relationships of the lncRNAs with the coding mRNAs and their products were identified in turkey reproductive tissues. The results obtained from the OMICS study may be useful in describing and characterizing the way that lncRNAs regulate genes and proteins as well as signaling pathways related to sperm motility.
Collapse
|
6
|
Sha Y, Liu W, Nie H, Han L, Ma C, Zhang X, Xiao Z, Qin W, Jiang X, Wei X. Homozygous mutation in DNALI1 leads to asthenoteratozoospermia by affecting the inner dynein arms. Front Endocrinol (Lausanne) 2022; 13:1058651. [PMID: 36726469 PMCID: PMC9885801 DOI: 10.3389/fendo.2022.1058651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 01/18/2023] Open
Abstract
Asthenozoospermia is the most common cause of male infertility. Dynein protein arms play a crucial role in the motility of sperm flagella and defects in these proteins generally impair the axoneme structure and affect sperm flagella function. In this study, we performed whole exome sequencing for a cohort of 126 infertile patients with asthenozoospermia and identified homozygous DNALI1 mutation in one patient from a consanguineous family. This identified homozygous mutation was verified by Sanger sequencing. In silico analysis showed that this homozygous mutation is very rare, highly pathogenic, and very conserved. Sperm routine analysis confirmed that the motility of the spermatozoa from the patient significantly decreased. Further sperm morphology analysis showed that the spermatozoa from the patient exhibited multiple flagella morphological defects and a specific loss in the inner dynein arms. Fortunately, the patient was able to have his child via intracytoplasmic sperm injection treatment. Our study is the first to demonstrate that homozygous DNALI1 mutation may impair the integration of axoneme structure, affect sperm motility and cause asthenoteratozoospermia in human beings.
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Hua Nie
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Lu Han
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Chunjie Ma
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Xiaoya Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Ziyi Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Weibing Qin
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Xiaoli Wei, ; Xiaoming Jiang, ; Weibing Qin,
| | - Xiaoming Jiang
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China
- *Correspondence: Xiaoli Wei, ; Xiaoming Jiang, ; Weibing Qin,
| | - Xiaoli Wei
- School of Medicine, Yunnan University, Kunming, Yunnan, China
- *Correspondence: Xiaoli Wei, ; Xiaoming Jiang, ; Weibing Qin,
| |
Collapse
|
7
|
Yammine T, Reynaud N, Lejeune H, Diguet F, Rollat-Farnier PA, Labalme A, Plotton I, Farra C, Sanlaville D, Chouery E, Schluth-Bolard C. Deciphering balanced translocations in infertile males by next-generation sequencing to identify candidate genes for spermatogenesis disorders. Mol Hum Reprod 2021; 27:6261938. [PMID: 34009290 DOI: 10.1093/molehr/gaab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Male infertility affects about 7% of the general male population. Balanced structural chromosomal rearrangements are observed in 0.4-1.4% of infertile males and are considered as a well-established cause of infertility. However, underlying pathophysiological mechanisms still need to be clarified. A strategy combining standard and high throughput cytogenetic and molecular technologies was applied in order to identify the candidate genes that might be implicated in the spermatogenesis defect in three male carriers of different balanced translocations. Fluorescence in situ hybridization (FISH) and whole-genome paired-end sequencing were used to characterize translocation breakpoints at the molecular level while exome sequencing was performed in order to exclude the presence of any molecular event independent from the chromosomal rearrangement in the patients. All translocation breakpoints were characterized in the three patients. We identified four variants: a position effect on LACTB2 gene in Patient 1, a heterozygous CTDP1 gene disruption in Patient 2, two single-nucleotide variations (SNVs) in DNAH5 gene and a heterozygous 17q12 deletion in Patient 3. The variants identified in this study need further validation to assess their roles in male infertility. This study shows that beside the mechanical effect of structural rearrangement on meiosis, breakpoints could result in additional alterations such as gene disruption or position effect. Moreover, additional SNVs or copy number variations may be fortuitously present and could explain the variable impact of chromosomal rearrangements on spermatogenesis. In conclusion, this study confirms the relevance of combining different cytogenetic and molecular techniques to investigate patients with spermatogenesis disorders and structural rearrangements on genomic scale.
Collapse
Affiliation(s)
- T Yammine
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Institut Neuromyogène, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France
| | - N Reynaud
- Hospices Civils de Lyon, Service de Génétique, Bron, France.,Service de Médecine de la Reproduction, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - H Lejeune
- Service de Médecine de la Reproduction, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Laboratoire d'hormonologie et endocrinologie Moléculaire, Hospices Civils de Lyon, Bron, France
| | - F Diguet
- Hospices Civils de Lyon, Service de Génétique, Bron, France
| | - P A Rollat-Farnier
- Hospices Civils de Lyon, Service de Génétique, Bron, France.,Cellule Bioinformatique, Hospices Civils de Lyon, Bron, France
| | - A Labalme
- Hospices Civils de Lyon, Service de Génétique, Bron, France
| | - I Plotton
- Service de Médecine de la Reproduction, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Laboratoire d'hormonologie et endocrinologie Moléculaire, Hospices Civils de Lyon, Bron, France.,Unite INSERM 1208, Université Lyon 1, Lyon, France
| | - C Farra
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Genetics, Hotel Dieu de France Medical Center, Beirut, Lebanon
| | - D Sanlaville
- Institut Neuromyogène, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France.,Hospices Civils de Lyon, Service de Génétique, Bron, France
| | - E Chouery
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - C Schluth-Bolard
- Institut Neuromyogène, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France.,Hospices Civils de Lyon, Service de Génétique, Bron, France
| |
Collapse
|