1
|
Tsuda S, Sakamoto A, Kawaguchi H, Uchiyama T, Kaname T, Yanagi K, Kunishima S, Ishiguro A. Novel biallelic GNE variants identified in a patient with chronic thrombocytopenia without any symptoms of myopathy. Ann Hematol 2024; 103:5945-5950. [PMID: 39576359 DOI: 10.1007/s00277-024-06104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 04/04/2025]
Abstract
GNE encodes a rate-limiting enzyme that regulates the biosynthesis of a sialic acid precursor. As sialic acids are critical for the platelet membrane and muscle fibers, GNE variants cause GNE-related thrombocytopenia and GNE-related myopathy. Here, we report a neonate with thrombocytopenia that initially met the criteria for neonatal allo-immune thrombocytopenia (NAIT) but was resistant to treatments and then revealed novel biallelic heterozygous GNE variants without any symptoms of myopathy when diagnosed. NAIT was initially diagnosed due to alloantibodies against HPA5 and its mismatch between the patient and his mother. However, intravenous immunoglobulin therapy and platelet transfusions showed minimal improvement in the platelet count. Platelet counts remained around 60 × 109/L, suggesting congenital thrombocytopenia. Gene panel sequencing at the age of 13 identified biallelic pathogenic variants of GNE. The patient did not exhibit any symptoms of muscular weakness, suggesting GNE-related myopathy. We demonstrated a GNE-related thrombocytopenia patient with novel biallelic heterozygous GNE variants. Clinical trials have involved the use of sialic acids or their precursors, as well as gene therapy, to treat GNE-related myopathy, which may slow or halt the progression of the disease. Therefore, early diagnosis of this disease may significantly impact its clinical course.
Collapse
Affiliation(s)
- Shota Tsuda
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Atsushi Sakamoto
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Division of Hematology, NCCHD, Tokyo, Japan.
| | - Hiroyuki Kawaguchi
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | | | | | - Shinji Kunishima
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Gifu, Japan
| | - Akira Ishiguro
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Division of Hematology, NCCHD, Tokyo, Japan.
| |
Collapse
|
2
|
Bae GY, Kim I, Sung J, Hwang J, Kim MS, Park JH, Cho SY. Compound heterozygous variants in the ABCG5 gene in a Korean boy with sitosterolemia. Ann Pediatr Endocrinol Metab 2024; 29:344-346. [PMID: 39506348 PMCID: PMC11541095 DOI: 10.6065/apem.2348030.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Ga young Bae
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Insung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Juyoung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - JiHoon Hwang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Sun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Ross JE, Mohan S, Zhang J, Sullivan MJ, Bury L, Lee K, Futchi I, Frantz A, McDougal D, Perez Botero J, Cattaneo M, Cooper N, Downes K, Gresele P, Keenan C, Lee AI, Megy K, Morange PE, Morgan NV, Schulze H, Zimowski K, Freson K, Lambert MP. Evaluating the clinical validity of genes related to hemostasis and thrombosis using the Clinical Genome Resource gene curation framework. J Thromb Haemost 2024; 22:645-665. [PMID: 38016518 PMCID: PMC10922649 DOI: 10.1016/j.jtha.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Inherited bleeding, thrombotic, and platelet disorders (BTPDs) are a heterogeneous set of diseases, many of which are very rare globally. Over the past 5 decades, the genetic basis of some of these disorders has been identified, and recently, high-throughput sequencing has become the primary means of identifying disease-causing genetic variants. OBJECTIVES Knowledge of the clinical validity of a gene-disease relationship is essential to provide an accurate diagnosis based on results of diagnostic gene panel tests and inform the construction of such panels. The Scientific and Standardization Committee for Genetics in Thrombosis and Hemostasis undertook a curation process for selecting 96 TIER1 genes for BTPDs. The purpose of the process was to evaluate the evidence supporting each gene-disease relationship and provide an expert-reviewed classification for the clinical validity of genes associated with BTPDs. METHODS The Clinical Genome Resource (ClinGen) Hemostasis/Thrombosis Gene Curation Expert Panel assessed the strength of evidence for TIER1 genes using the semiquantitative ClinGen gene-disease clinical validity framework. ClinGen Lumping and Splitting guidelines were used to determine the appropriate disease entity or entities for each gene, and 101 gene-disease relationships were identified for curation. RESULTS The final outcome included 68 Definitive (67%), 26 Moderate (26%), and 7 Limited (7%) classifications. The summary of each curation is available on the ClinGen website. CONCLUSION Expert-reviewed assignment of gene-disease relationships by the ClinGen Hemostasis/Thrombosis Gene Curation Expert Panel facilitates accurate molecular diagnoses of BTPDs by clinicians and diagnostic laboratories. These curation efforts can allow genetic testing to focus on genes with a validated role in disease.
Collapse
Affiliation(s)
- Justyne E Ross
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jing Zhang
- KingMed Diagnostics, Guangzhou, Guangdong, China
| | - Mia J Sullivan
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Isabella Futchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Annabelle Frantz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dara McDougal
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Juliana Perez Botero
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA; Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marco Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Nichola Cooper
- Centre for Haematology, Imperial College London, London, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Catriona Keenan
- Haemostasis Molecular Diagnostic Laboratory, National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | - Alfred I Lee
- Section of Hematology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Pierre-Emmanuel Morange
- INSERM, INRAE, C2VN, Aix Marseille University, Marseille, France; Hematology Laboratory, La Timone Hospital, APHM, Marseille, France
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Harald Schulze
- Institute of Experimental Biomedicine, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Karen Zimowski
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.
| | - Michele P Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Gebetsberger J, Mott K, Bernar A, Klopocki E, Streif W, Schulze H. State-of-the-Art Targeted High-Throughput Sequencing for Detecting Inherited Platelet Disorders. Hamostaseologie 2023; 43:244-251. [PMID: 37611606 DOI: 10.1055/a-2099-3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of rare entities caused by molecular divergence in genes relevant for platelet formation and function. A rational diagnostic approach is necessary to counsel and treat patients with IPDs. With the introduction of high-throughput sequencing at the beginning of this millennium, a more accurate diagnosis of IPDs has become available. We discuss advantages and limitations of genetic testing, technical issues, and ethical aspects. Additionally, we provide information on the clinical significance of different classes of variants and how they are correctly reported.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Aline Bernar
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Center for Rare Blood Cell Disorders, Center for Rare Diseases, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Enhanced hepatic clearance of hyposialylated platelets explains thrombocytopenia in GNE-related macrothrombocytopenia. Blood Adv 2022; 6:3347-3351. [PMID: 35255501 PMCID: PMC9198933 DOI: 10.1182/bloodadvances.2021006830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
|
6
|
Alam M, Alathaibi A, Kashif M, Zakaria M, Attar R, Al-Ghamdi H, Al Harbi A. GNE – related severe congenital macrothrombocytopenia: A case report and literature review. JOURNAL OF APPLIED HEMATOLOGY 2022. [DOI: 10.4103/joah.joah_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Lassandro G, Palladino V, Faleschini M, Barone A, Boscarol G, Cesaro S, Chiocca E, Farruggia P, Giona F, Gorio C, Maggio A, Marinoni M, Marzollo A, Palumbo G, Russo G, Saracco P, Spinelli M, Verzegnassi F, Morga F, Savoia A, Giordano P. "CHildren with Inherited Platelet disorders Surveillance" (CHIPS) retrospective and prospective observational cohort study by Italian Association of Pediatric Hematology and Oncology (AIEOP). Front Pediatr 2022; 10:967417. [PMID: 36507135 PMCID: PMC9728612 DOI: 10.3389/fped.2022.967417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inherited thrombocytopenias (ITs) are rare congenital bleeding disorders characterized by different clinical expression and variable prognosis. ITs are poorly known by clinicians and often misdiagnosed with most common forms of thrombocytopenia. MATERIAL AND METHODS "CHildren with Inherited Platelet disorders Surveillance" study (CHIPS) is a retrospective - prospective observational cohort study conducted between January 2003 and January 2022 in 17 centers affiliated to the Italian Association of Pediatric Hematology and Oncology (AIEOP). The primary objective of this study was to collect clinical and laboratory data on Italian pediatric patients with inherited thrombocytopenias. Secondary objectives were to calculate prevalence of ITs in Italian pediatric population and to assess frequency and genotype-phenotype correlation of different types of mutations in our study cohort. RESULTS A total of 139 children, with ITs (82 male - 57 female) were enrolled. ITs prevalence in Italy ranged from 0.7 per 100,000 children during 2010 to 2 per 100,000 children during 2022. The median time between the onset of thrombocytopenia and the diagnosis of ITs was 1 years (range 0 - 18 years). A family history of thrombocytopenia has been reported in 90 patients (65%). Among 139 children with ITs, in 73 (53%) children almost one defective gene has been identified. In 61 patients a pathogenic mutation has been identified. Among them, 2 patients also carry a variant of uncertain significance (VUS), and 4 others harbour 2 VUS variants. VUS variants were identified in further 8 patients (6%), 4 of which carry more than one variant VUS. Three patients (2%) had a likely pathogenic variant while in 1 patient (1%) a variant was identified that was initially given an uncertain significance but was later classified as benign. In addition, in 17 patients the genetic diagnosis is not available, but their family history and clinical/laboratory features strongly suggest the presence of a specific genetic cause. In 49 children (35%) no genetic defect were identified. In ninetyseven patients (70%), thrombocytopenia was not associated with other clinically apparent disorders. However, 42 children (30%) had one or more additional clinical alterations. CONCLUSION Our study provides a descriptive collection of ITs in the pediatric Italian population.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Michela Faleschini
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Angelica Barone
- Pediatric Hematology Oncology, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianluca Boscarol
- Department of Pediatrics, Central Teaching Hospital of Bolzano/Bozen, Bolzano, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elena Chiocca
- Pediatric Hematology Oncology, Department of Pediatric Hematology/Oncology and HSCT, Meyer Children's University Hospital, Florence, Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, AOU Policlinico Umberto I, Rome, Italy
| | - Chiara Gorio
- Hematology Oncology Unit, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Angela Maggio
- UOC Oncoematologia Pediatrica-IRCCS Ospedale Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Maddalena Marinoni
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Socio Sanitaria Settelaghi, Varese, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Russo
- Pediatric Hematology Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Saracco
- Pediatric Hematology, Department of Pediatrics, University Hospital Città Della Salute e Della Scienza, Turin, Italy
| | - Marco Spinelli
- Pediatric Hematology Oncology, Department of Pediatrics, MBBM Foundation, Monza, Italy
| | - Federico Verzegnassi
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Morga
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Savoia
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Smolag KI, Fager Ferrari M, Zetterberg E, Leinoe E, Ek T, Blom AM, Rossing M, Martin M. Severe Congenital Thrombocytopenia Characterized by Decreased Platelet Sialylation and Moderate Complement Activation Caused by Novel Compound Heterozygous Variants in GNE. Front Immunol 2021; 12:777402. [PMID: 34858435 PMCID: PMC8630651 DOI: 10.3389/fimmu.2021.777402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background Hereditary thrombocytopenias constitute a genetically heterogeneous cause of increased bleeding. We report a case of a 17-year-old boy suffering from severe macrothrombocytopenia throughout his life. Whole genome sequencing revealed the presence of two compound heterozygous variants in GNE encoding the enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, crucial for sialic acid biosynthesis. Sialic acid is required for normal platelet life span, and biallelic variants in GNE have previously been associated with isolated macrothrombocytopenia. Furthermore, sialic acid constitutes a key ligand for complement factor H (FH), an important inhibitor of the complement system, protecting host cells from indiscriminate attack. Methods Sialic acid expression and FH binding to platelets and leukocytes was evaluated by flow cytometry. The binding of FH to erythrocytes was assessed indirectly by measuring the rate of complement mediated hemolysis. Complement activation was determined by measuring levels of C3bBbP (alternative pathway), C4d (classical/lectin pathway) and soluble terminal complement complex assays. Results The proband exhibited markedly decreased expression of sialic acid on platelets and leukocytes. Consequently, the binding of FH was strongly reduced and moderate activation of the alternative and classical/lectin complement pathways was observed, together with an increased rate of erythrocyte lysis. Conclusion We report two previously undescribed variants in GNE causing severe congenital macrothrombocytopenia in a compound heterozygous state, as a consequence of decreased platelet sialylation. The decreased sialylation of platelets, leukocytes and erythrocytes affects the binding of FH, leading to moderate complement activation and increased hemolysis.
Collapse
Affiliation(s)
- Karolina I Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marcus Fager Ferrari
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Zetterberg
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Leinoe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Ek
- Children's Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|