1
|
Xu G, Yuan H, Liu J, Wang X, Ma L, Wang Y, Dong G. Astragalus Mongholicus Polysaccharides Alleviate Kidney Injury in Rats with Type 2 Diabetes Through Modulation of Oxidation, Inflammation, and Gut Microbiota. Int J Mol Sci 2025; 26:1470. [PMID: 40003935 PMCID: PMC11855448 DOI: 10.3390/ijms26041470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
We aimed to uncover the underlying mechanisms contributing to the therapeutic efficacy of Astragalus mongholicus Polysaccharides (mAPS) in alleviating diabetic nephropathy (DN). The rat model of DN was subjected to a high-sugar and high-fat diet (HSHFD) coupled with streptozotocin (STZ) injection. Our findings revealed that mAPS administration decreased fasting blood glucose (FBG), BUN, SCR, UA, and MDA levels, while elevating serum GSH, GSH-PX, and SOD activities in DN rats (p < 0.05). Furthermore, there was a notable rise in the mRNA and protein expression of renal Nrf-2, GCLC, NQO1, and HO-1 post mAPS treatment (p < 0.05). Additionally, mAPS supplementation led to reduced protein expression of TLR4, NLRP3, p-NF-κB, TGF-β, and Smad4. Concurrently, mAPS exerted a modulatory effect on gut microbiota, as evidenced by the increased abundance of Muribaculaceae, Ruminococcus_1, Phascolarctobacterium, and Lachnoclostridium-related genera. Spearman correlation analysis illustrated a negative association between the abundance of microbiota (Muribaculaceae, Lachnospiraceae_NK4A136, Ruminococcus_1, Clostridiales) and the levels of serum parameters (BUN, CR, UA, TC, TG). In summary, our data robustly attests to the potential of mAPS in modulating oxidative stress, inflammation, and gut microbiota, ultimately resulting in improved renal function in DN rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.X.); (H.Y.); (J.L.); (X.W.); (L.M.)
| | - Guicheng Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.X.); (H.Y.); (J.L.); (X.W.); (L.M.)
| |
Collapse
|
2
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|