1
|
Lin SH, Lu JW, Hsieh WT, Chou YE, Su TC, Tsai TJ, Tsai YJ, Yang PJ, Yang SF. Evaluation of the clinical significance of long non-coding RNA MALAT1 genetic variants in human lung adenocarcinoma. Aging (Albany NY) 2024; 16:5740-5750. [PMID: 38517388 PMCID: PMC11006483 DOI: 10.18632/aging.205675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most frequent histological subtype of lung cancer, which is the most common malignant tumor and the main cause of cancer-related mortality globally. Recent reports revealed that long non-coding RNA (lncRNA) of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a crucial role in tumorigenesis and metastasis development in lung cancer. However, the contribution of MALAT1 genetic variants to the development of LUAD is unclear, especially in epidermal growth factor receptor (EGFR) mutation status. In this study, 272 LADC patients with different EGFR status were recruited to dissect the allelic discrimination of the MALAT1 polymorphisms at rs3200401, rs619586, and rs1194338. The findings of the study showed that MALAT1 polymorphisms rs3200401, rs619586, and rs1194338 were not associated to LUAD susceptibility; however, rs3200401 polymorphisms was significantly correlated to EGFR wild-type status and tumor stages in LUAD patients in dominant model (p=0.016). Further analyses using the datasets from The Cancer Genome Atlas (TCGA) revealed that lower MALAT1 mRNA levels were associated with the advanced stage, and lymph node metastasis in LADC patients. In conclusion, our results showed that MALAT1 rs3200401 polymorphisms dramatically raised the probability of LUAD development.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wang-Ting Hsieh
- The Affiliated High School of Tunghai University, Taichung, Taiwan
- Department of Occupational Therapy, Asia University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tun-Jen Tsai
- The Affiliated High School of Tunghai University, Taichung, Taiwan
| | - Yun-Jung Tsai
- Translational Pathology Core Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Abdi E, Latifi-Navid S, Panahi A, Latifi-Navid H. LncRNA polymorphisms and lung cancer risk. Per Med 2023; 20:511-522. [PMID: 37916472 DOI: 10.2217/pme-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lung cancer (LC) imposes a significant burden, and is associated with high mortality and morbidity among malignant tumors. Aberrant expression of particular lncRNAs is closely linked to LC. LncRNA polymorphisms cause abnormal expression levels and/or structural dysfunction. They can affect the progression of cancer, survival, response to chemotherapy and recurrence rates in cancer patients. The present article provides a comprehensive overview of the effect of lncRNA genetic polymorphisms on LC. It is proposed that lncRNA-related variants can be used to predict cancer risk and therapeutic outcomes. More large-scale trials on diverse ethnic groups are required to validate the results, thus personalizing LC therapy based on lncRNA genotypes.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| |
Collapse
|
3
|
Zhou J, Meng C, Li Y, Fu Y, Long W, Huang H, Liu Y, Lyu P, Xiao S. MiRNA-423 rs6505162 and miRNA-6811 rs2292879 SNP associated with lung cancer in Hainan, China. Biosci Rep 2023; 43:BSR20231152. [PMID: 37694278 PMCID: PMC10517097 DOI: 10.1042/bsr20231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are known to exert significant influence on various physiological processes and diseases, including cancers. The primary objective of this present study was to examine the impact of eight single-nucleotide polymorphisms (SNPs) in miRNA on the susceptibility to lung cancer (LC) within the Chinese Southern population. METHODS The genotypes of these eight polymorphisms were determined in 132 LC patients and 214 cancer-free controls. RESULTS In overall analyses, GG genotype of miRNA-6811 rs2292879 polymorphism was significantly correlated with increased risk of LC (GG vs. AA, adjusted OR = 5.10, 95% CI = 1.02-25.43, P=0.047), yet the genotype frequencies of rs2292879 SNP in controls did not met the Hardy-Weinberg equilibrium (HWE) (P=0.001) in present study. Stratified analyses by smoking revealed that miRNA-423 rs6505162 variants significantly decreased the LC risk in heterozygous (CA vs. CC, adjusted OR = 0.14, 95% CI = 0.03-0.81, P=0.028) and recessive (AA vs. CA + CC, adjusted OR = 0.17, 95% CI = 0.03-0.90, P=0.038) genetic models in smoking population. However, miRNA-196A2 rs11614913, miRNA-196A2 rs12304647, miRNA-146A rs2910164, miRNA-16-1 rs1022960, miRNA-608 rs4919510, and miRNA-27a rs895819 polymorphisms were not significantly associated with LC. CONCLUSION The findings of our study indicate a potential decrease in LC risk among smokers with the miRNA-423 rs6505162 variants, while an increase in risk is associated with miRNA-6811 rs2292879 polymorphisms in the population of Southern Chinese. However, further well-designed research is necessary to fully understand the precise impact of these two SNPs on the development of LC.
Collapse
Affiliation(s)
- Jing Zhou
- International School of Public Health and One Health, Laboratory of Tropical Environment and Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou 571199, China
| | - Chong Meng
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Yixuan Li
- International School of Public Health and One Health, Laboratory of Tropical Environment and Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou 571199, China
| | - Yihui Fu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Wenfang Long
- International School of Public Health and One Health, Laboratory of Tropical Environment and Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou 571199, China
| | - Hairong Huang
- International School of Public Health and One Health, Laboratory of Tropical Environment and Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou 571199, China
| | - Yunru Liu
- International School of Public Health and One Health, Laboratory of Tropical Environment and Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou 571199, China
| | - Pengfei Lyu
- Department of Breast Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Sha Xiao
- International School of Public Health and One Health, Laboratory of Tropical Environment and Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
4
|
Chang WW, Zhang L, Wen LY, Huang Q, Tong X, Tao YJ, Chen GM. Association of tag single nucleotide polymorphisms (SNPs) at lncRNA MALAT1 with type 2 diabetes mellitus susceptibility in the Chinese Han population: A case-control study. Gene X 2023; 851:147008. [DOI: 10.1016/j.gene.2022.147008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
|
5
|
Cao L, Yan G, Yu S, Li F, Su Z, Hou X, Xiao J, Tian T. Associations of MALAT1 and its functional single nucleotide polymorphisms with cancer. Pathol Res Pract 2022; 236:153988. [PMID: 35759938 DOI: 10.1016/j.prp.2022.153988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Systematic research on the associations between vital single nucleotide polymorphisms (SNPs) in MALAT1 and cancer risk was still lacking. Thus, we performed this study. MATERIALS AND METHODS The literature searches were until April 1, 2022. The pooled association-analysis results were assessed by odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) in three genetic models. In addition, we explored the potential functions of MALAT1 and its vital SNPs based on several public websites. RESULTS Eighteen articles about four SNPs (rs619586, rs664589, rs1194338, and rs3200401) involving 11,843 cancer cases and 14,682 controls were collected. Rs619586, rs664589, and rs1194338 were associated with cancer risk (all P-value < 0.05). Each SNP of the three was significantly related to the risk of colorectal cancer (CRC), and rs619586 correlated with hepatocellular carcinoma (HCC) risk (all P-value < 0.05). The three SNPs might affect the transcription factor, promoter, or enhancer functions. MALAT1 expressed significantly higher in CRC and HCC than in normal tissues. The respective area under the receiver operating characteristic curve of MALAT1 for CRC and HCC patients was 0.783 and 0.864. Moreover, survival analysis indicated that MALAT1 might be a potential prognostic marker of CRC and HCC (all relevant P-value < 0.05). CONCLUSIONS The functional SNPs in MALAT1 correlated with cancer risk. MALAT1 and its vital functional SNPs might be potential biomarkers for predicting the risk and prognosis of two types of cancer, especially CRC. Further investigations are needed to confirm our present findings.
Collapse
Affiliation(s)
- Lina Cao
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Guodong Yan
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Shumin Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Fuju Li
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Zhixia Su
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Xiaoyan Hou
- Center for Disease Control and Prevention of Nantong, Nantong, Jiangsu, China.
| | - Jing Xiao
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China.
| | - Tian Tian
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China.
| |
Collapse
|
6
|
Tong G, Tong W, He R, Cui Z, Li S, Zhou B, Yin Z. MALAT1 Polymorphisms and Lung Cancer Susceptibility in a Chinese Northeast Han Population. Int J Med Sci 2022; 19:1300-1306. [PMID: 35928715 PMCID: PMC9346381 DOI: 10.7150/ijms.73026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background: LncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was competitive endogenous RNA (ceRNA) involved in various molecular processes for metastasis development in lung cancer. Single nucleotide polymorphisms (SNPs) in MALAT1 gene might be predictive markers for lung cancer. In our study, we selected rs619586 and rs3200401 in MALAT1 gene to explore their effects on lung cancer susceptibility. Methods: The case-control study included 444 lung cancer cases and 460 healthy controls. Genotyping was performed by Taqman allelic discrimination method. Logistic regression, Student t-test, and Chi-square test (χ2 ) were used to analyze the data. Results: The findings of the study showed that rs3200401 was significantly associated with the risk of non-small cell lung cancer (NSCLC) and lung squamous cell carcinoma (LUSC). Compared with homozygous CC genotype, CT heterozygous genotype decreased risk of NSCLC (Pa = 0.034) and LUSC (Pa = 0.025). In addition, no statistical association was detected between rs619586 and lung cancer susceptibility. The interactions between genes and cigarette smoking were discovered via crossover analysis. However, there were no remarkable gene-environment interactions in additive and multiplicative model. Conclusion: Rs3200401 in lncRNA MALAT1 was associated with the susceptibility of non-small-cell lung cancer and lung squamous cell carcinoma. The gene-environmental (cigarette smoking) interactions were not notable.
Collapse
Affiliation(s)
- Guanghui Tong
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China.,Department of Obstetrics and Gynecology, Liaoning Provincial Hospital for women and children, Shayang Street, Heping District, Shenyang 110122, P.R. China
| | - Weiwei Tong
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ran He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Zhigang Cui
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang 110001, P.R. China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| |
Collapse
|
7
|
Bardhan A, Banerjee A, Basu K, Pal DK, Ghosh A. PRNCR1: a long non-coding RNA with a pivotal oncogenic role in cancer. Hum Genet 2021; 141:15-29. [PMID: 34727260 PMCID: PMC8561087 DOI: 10.1007/s00439-021-02396-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been gaining importance in the field of cancer research in recent years. PRNCR1 (prostate cancer-associated non-coding RNA1) is a 12.7 kb, intron-less lncRNA found to play an oncogenic role in malignancy of diverse organs including prostate, breast, lung, oral cavity, colon and rectum. Single-nucleotide polymorphisms (SNPs) of PRNCR1 locus have been found to be associated with cancer susceptibility in different populations. In this review, an attempt has been made for the first time to summarize all sorts of available data on PRNCR1 to date from relevant databases (GeneCard, LncExpDB, Ensembl genome browser, and PubMed). As functional roles of PRNCR1, miRNA (microRNA) sponging was mostly highlighted in the pathogenesis of different cancer; in addition, an association of the lncRNA with chromatin-modifying complex to enhance androgen receptor-mediated gene transcription was reported in prostate cancer. Diagnostic and prognostic importance of PRNCR1 was found in some malignancies suggesting potency of the lncRNA to serve as a clinical biomarker. For PRNCR1 SNPs, although cancer susceptibility of the risk alleles/genotypes was reported in different populations, majorities of the findings were not replicated and underlying molecular mechanisms remained unexplored. Therapeutic implication of PRNCR1 was not studied well and future research may come up in this direction for intervening novel strategies to fight against cancer.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Keya Basu
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Amlan Ghosh
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|