1
|
Zou C, Wang X, Huang R, Hu H. Emerging and Established Adverse Events of Pasireotide: A Twelve-Year Pharmacovigilance Study. Endocr Pract 2025:S1530-891X(25)00119-3. [PMID: 40246231 DOI: 10.1016/j.eprac.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES This study aimed to provide a comprehensive assessment of pasireotide's real-world safety profile by analyzing adverse events (AEs) reported in the FDA Adverse Event Reporting System (FAERS). METHODS FAERS data from Q4 2012 to Q3 2024 were retrospectively analyzed using disproportionality methods, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian confidence propagation neural network (BCPNN), and multi-item gamma Poisson shrinker (MGPS). Descriptive analyses evaluated clinical characteristics such as age, sex, country of report, and time to AE onset, while subgroup analyses assessed variations in AE occurrence across demographic groups. RESULTS A total of 7,892 pasireotide-related AEs were identified across 27 System Organ Classes (SOCs). Frequently reported AEs included hyperglycemia, cholelithiasis, and gastrointestinal disturbances, with hyperglycemia being the most common. Emerging safety signals were identified, including nephrolithiasis, sudden hearing loss, ptosis, and atrioventricular block. Subgroup analyses indicated that metabolic AEs were more prevalent in females, while males reported higher rates of gastrointestinal symptoms. Older patients were more susceptible to cardiovascular AEs. CONCLUSIONS This study underscores the need for ongoing pharmacovigilance to detect both established and emerging AEs associated with pasireotide. Implementing personalized monitoring strategies based on demographic factors such as age and sex can help mitigate risks and optimize treatment outcomes, enhancing patient safety in clinical practice.
Collapse
Affiliation(s)
- Cong Zou
- Department of Endocrinology, The Affiliated Rehabilitation Hospital, Nanchang University, Nanchang, Jiangxi Province, China; Department of Endocrinology, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Doello K, Chico MA, Quiñonero F, Ortiz R, Prados J, Mesas C, Melguizo C. Clinical Evaluation of Response to Octreotide and Chemotherapy in High-Grade Malignant Neuroendocrine Tumors and Promising In Vitro Preclinical Results with Pasireotide. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1039. [PMID: 39064468 PMCID: PMC11279282 DOI: 10.3390/medicina60071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: High-grade malignant neuroendocrine tumors (G3 NETs) and neuroendocrine carcinomas (NECs) are characterized by rapid proliferation, high metastatic capacity, and strong expression of somatostatin receptors (SSTRs). We aimed to analyze the presence of SSTRs in NET G3 and NEC, and to correlate their expression with the use of octreotide and pasireotide. Materials and Methods: For this purpose, we first performed a retrospective study of G3 NET and NEC patients, which included the determination of SSTR expression and response to octreotide treatment. Second, we selected the H69 small cell lung cancer cell line to determine the effect of octreotide and pasireotide. Results: Our results showed the traditional somatostatin analog (SSA) octreotide was ineffective in patients with NET G3 and NEC. On the other hand, RT-qPCR showed a high expression of SSTR2 and SSTR5 in H69 cells. Interestingly, while octreotide did not modify H69 cell proliferation, a strong inhibition of proliferation was detected with the use of pasireotide. Conclusions: In view of these results, a clinical trial in NET G3 and NEC patients using pasireotide is necessary to determine the usefulness of this drug in improving patient treatment.
Collapse
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain;
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain; (M.A.C.); (R.O.)
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (F.Q.); (C.M.)
| | - Raúl Ortiz
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain; (M.A.C.); (R.O.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (F.Q.); (C.M.)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (F.Q.); (C.M.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain; (M.A.C.); (R.O.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (F.Q.); (C.M.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Pellegrini E, Multari G, Gallo FR, Vecchiotti D, Zazzeroni F, Condello M, Meschini S. A natural product, voacamine, sensitizes paclitaxel-resistant human ovarian cancer cells. Toxicol Appl Pharmacol 2022; 434:115816. [PMID: 34856211 DOI: 10.1016/j.taap.2021.115816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
Most women with ovarian cancer are treated with chemotherapy before or after surgery. Unfortunately, chemotherapy treatment can cause negative side effects and the onset of multidrug resistance (MDR). The aim of this study is to evaluate the chemosensitizing effect of a natural compound, voacamine (VOA), in ovarian (A2780 DX) and colon (LoVo DX) cancer drug-resistant cell lines which overexpress P-glycoprotein (P-gp), in combination with paclitaxel (PTX), or doxorubicin (DOX) or 5-fluorouracil (5-FU). VOA, a bisindole alkaloid extracted from Peschiera fuchsiaefolia, has already been shown to be effective in enhancing the effect of doxorubicin, because it interferes with the P-gp function. Ovarian cancer cytotoxicity test shows that single treatments with VOA, DOX and PTX do not modify cell viability, while pretreatment with VOA, and then PTX or DOX for 72 h, induces a decrease. In colon cancer, since 5-FU is not a-substrate for P-gp, VOA has no sensitizing effect while in VOA + DOX there is a decrease in viability. Annexin V/PI test, cell cycle analysis, activation of cleaved PARP1 confirm that VOA plus PTX induce apoptotic cell death. Confocal microscopy observations show the different localization of NF-kB after treatment with VOA + PTX, confirming the inhibition of nuclear translocation induced by VOA pretreatment. Our data show the specific effect of VOA which only works on drugs known to be substrates of P-gp.
Collapse
Affiliation(s)
- Evelin Pellegrini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Giuseppina Multari
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Francesca Romana Gallo
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy..
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy..
| |
Collapse
|
4
|
Viecceli C, Mattos ACV, Costa MCB, de Melo RB, Rodrigues TDC, Czepielewski MA. Evaluation of ketoconazole as a treatment for Cushing's disease in a retrospective cohort. Front Endocrinol (Lausanne) 2022; 13:1017331. [PMID: 36277689 PMCID: PMC9585352 DOI: 10.3389/fendo.2022.1017331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The first-line treatment for Cushing's disease is transsphenoidal surgery, after which the rates of remission are 60 to 80%, with long-term recurrence of 20 to 30%, even in those with real initial remission. Drug therapies are indicated for patients without initial remission or with surgical contraindications or recurrence, and ketoconazole is one of the main available therapies. The objective of this study was to evaluate the safety profile of and the treatment response to ketoconazole in Cushing's disease patients followed up at the endocrinology outpatient clinic of a Brazilian university hospital. PATIENTS AND METHODS This was a retrospective cohort of Cushing's disease patients with active hypercortisolism who used ketoconazole at any stage of follow-up. Patients who were followed up for less than 7 days, who did not adhere to treatment, or who were lost to follow-up were excluded. RESULTS Of the 172 Cushing's disease patients who were followed up between 2004 and 2020, 38 received ketoconazole. However, complete data was only available for 33 of these patients. Of these, 26 (78%) underwent transsphenoidal surgery prior to using ketoconazole, five of whom (15%) had also undergone radiotherapy; seven used ketoconazole as a primary treatment. Ketoconazole use ranged from 14 days to 14.5 years. A total of 22 patients had a complete response (66%), three patients had a partial response (9%), and eight patients had no response to treatment (24%), including those who underwent radiotherapy while using ketoconazole. Patients whose hypercortisolism was controlled or partially controlled with ketoconazole had lower baseline 24-h urinary free cortisol levels than the uncontrolled group [times above the upper limit of normal: 0.62 (SD, 0.41) vs. 5.3 (SD, 8.21); p < 0.005, respectively] in addition to more frequent previous transsphenoidal surgery (p < 0.04). The prevalence of uncontrolled patients remained stable over time (approximately 30%) despite ketoconazole dose adjustments or association with other drugs, which had no significant effect. One patient received adjuvant cabergoline from the beginning of the follow-up, and it was prescribed to nine others due to clinical non-response to ketoconazole alone. Ten patients (30%) reported mild adverse effects, such as nausea, vomiting, dizziness, and loss of appetite. Only four patients had serious adverse effects that warranted discontinuation. There were 20 confirmed episodes of hypokalemia among 10/33 patients (30%). CONCLUSION Ketoconazole effectively controlled hypercortisolism in 66% of Cushing's disease patients, being a relatively safe drug for those without remission after transsphenoidal surgery or whose symptoms must be controlled until a new definitive therapy is carried out. Hypokalemia is a frequent metabolic effect not yet described in other series, which should be monitored during treatment.
Collapse
Affiliation(s)
- Camila Viecceli
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, UFRGS, Porto Alegre, Brazil
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, Brazil
| | - Ana Carolina Viana Mattos
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, UFRGS, Porto Alegre, Brazil
| | | | | | - Ticiana da Costa Rodrigues
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, UFRGS, Porto Alegre, Brazil
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, Brazil
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mauro Antonio Czepielewski
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, UFRGS, Porto Alegre, Brazil
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, Brazil
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- *Correspondence: Mauro Antonio Czepielewski,
| |
Collapse
|
5
|
Valea A, Sandru F, Petca A, Dumitrascu MC, Carsote M, Petca RC, Ghemigian A. Aggressive prolactinoma (Review). Exp Ther Med 2021; 23:74. [PMID: 34934445 DOI: 10.3892/etm.2021.10997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aggressive prolactinoma (APRL) is a subgroup of aggressive pituitary tumors (accounting for 10% of all hypophyseal neoplasia) which are defined by: invasion based on radiological and/or histological features, a higher proliferation profile when compared to typical adenomas and rapidly developing resistance to standard medication/protocols in addition to an increased risk of early recurrence. This is a narrative review focusing on APRL in terms of both presentation and management. Upon admission, the suggestive features may include increased serum prolactin with a large tumor diameter (mainly >4 cm), male sex, early age at diagnosis (<20 years), and genetic predisposition [multiple endocrine neoplasia type 1 (MEN1), aryl hydrocarbon receptor interacting protein (AIP), succinate dehydrogenase (SDHx) gene mutations]. Potential prognostic factors are indicated by assessment of E-cadherin, matrix metalloproteinase (MMP)-9, and vascular endothelial growth factor (VEGF) status. Furthermore, during management, APRL may be associated with dopamine agonist (DA) resistance (described in 10-20% of all prolactinomas), post-hypophysectomy relapse, mitotic count >2, Ki-67 proliferation index ≥3%, the need for radiotherapy, lack of response in terms of controlling prolactin levels and tumor growth despite multimodal therapy. However, none of these as an isolated element serves as a surrogate of APRL diagnosis. A fourth-line therapy is necessary with temozolomide, an oral alkylating chemotherapeutic agent, that may induce tumor reduction and serum prolactin reduction in 75% of cases but only 8% have a normalization of prolactin levels. Controversies surrounding the duration of therapy still exist; also regarding the fifth-line therapy, post-temozolomide intervention. Recent data suggest alternatives such as somatostatin analogues (pasireotide), checkpoint inhibitors (ipilimumab, nivolumab), tyrosine kinase inhibitors (TKIs) (lapatinib), and mTOR inhibitors (everolimus). APRL represents a complex condition that is still challenging, and multimodal therapy is essential.
Collapse
Affiliation(s)
- Ana Valea
- Department of Endocrinology, 'I. Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Department of Endocrinology, Clinical County Hospital, 400000 Cluj-Napoca, Romania
| | - Florica Sandru
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Elias' University Emergency Hospital, 011461 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Elias' University Emergency Hospital, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Urology, 'Prof. Dr. Theodor Burgele' Clinical Hospital, 061344 Bucharest, Romania
| | - Adina Ghemigian
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|