1
|
Liu Z, Xie Y, Liu S, Shen S, Zhu Y, Gou Q. Identification of the ferroptosis regulator HELLS with prognostic value for adrenocortical carcinoma based on integrated analysis and experimental validation. Gland Surg 2023; 12:1251-1270. [PMID: 37842529 PMCID: PMC10570968 DOI: 10.21037/gs-22-736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/27/2023] [Indexed: 10/17/2023]
Abstract
Background For adrenocortical carcinoma (ACC), a rare endocrine malignancy with a high rate of mortality and recurrence, it is difficult for clinicians to predict overall survival and select the most effective treatment. Targeting ferroptosis, a form of cell death, has been reported to be a promising therapeutic strategy for ACC; however, the core ferroptosis regulator and its prognostic value in ACC remain unknown. Methods RNA sequencing data and clinical information were downloaded from public databases. Differentially expressed gene and survival analyses were performed to identify candidate ferroptosis regulators. A multivariate Cox regression model was used to construct a gene signature, and a nomogram was constructed to predict the overall survival of patients with ACC. Gene set variation analysis (GSVA) was used to identify underlying aberrant pathways and the relative immune cell infiltration levels of each ACC sample. Immunohistochemistry staining was performed in formalin-fixed paraffin-embedded tumor tissue sections. Results Ultimately, 23 differentially expressed ferroptosis regulators were identified between normal adrenal gland and ACC tissues, and 50 ferroptosis regulators were related to prognosis, with 13 ferroptosis regulators being simultaneously found to satisfy the differential expression and prognostic value. According to the multivariate Cox regression model, a ferroptosis regulator signature was constructed from 3 genes in The Cancer Genome Atlas (TCGA; hazard ratio =9.01; P=1.39×10-10), and the area under the curve (AUC) values of 3-, 5-, 8-year overall survival were 0.924, 0.906, and 0.866, respectively. The survival analysis and the receiver operating characteristic (ROC) analysis validated the prognostic value of the ferroptosis regulator signature in 3 validation datasets. Moreover, metabolism-, E2F-, MYC-, and G2/M checkpoint-related pathways and aberrant immune cell infiltration levels were identified as being responsible for the different prognosis of risk groups in ACC. HELLS was found to be a significantly differentially expressed ferroptosis-suppressor gene with a prognostic value in ACC and to be highly associated with immune cell infiltration levels and multiple biological functions. Conclusions A ferroptosis regulator signature showed promising power for predicting the prognosis of ACC, and HELLS was identified as a hub ferroptosis regulator in the initiation and progression of ACC.
Collapse
Affiliation(s)
- Zijian Liu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shengzhuo Liu
- Urology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Sikui Shen
- Urology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchun Zhu
- Urology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yao L, Li Y, Li S, Wang M, Cao H, Xu L, Xu Y. ARHGAP39 is a prognostic biomarker involved in immune infiltration in breast cancer. BMC Cancer 2023; 23:440. [PMID: 37189064 DOI: 10.1186/s12885-023-10904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Current studies on the role of ARHGAP39 mainly focused on its effect on neurodevelopment. However, there are few studies on the comprehensive analysis of ARHGAP39 in breast cancer. METHODS ARHGAP39 expression level was analyzed based on the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression Project (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database and validated by qPCR in various cell lines and tumor tissues. The prognostic value was analyzed using Kaplan-Meier curve analysis. CCK-8 and transwell assays were conducted to identify the biological function of ARHGAP39 in tumorigenesis. Signaling pathways related to ARHGAP39 expression were identified by the GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA). The correlations between ARHGAP39 and cancer immune infiltrates were investigated via TIMER, CIBERSORT, ESTIMATE and tumor-immune system interactions database (TISIDB). RESULTS ARHGAP39 was overexpressed in breast cancer and associated with poor survival outcomes. In vitro experiments revealed that ARHGAP39 could facilitate the proliferation, migration, and invasion capability of breast cancer cells. GSEA analysis showed that the main enrichment pathways of ARHGAP39 was immunity-related pathways. Considering the immune infiltration level, ARHGAP39 was negatively associated with infiltrating levels of CD8 + T cell and macrophage, and positively associated with CD4 + T cell. Furthermore, ARHGAP39 was significantly negatively correlated with immune score, stromal score, and ESTIMATE score. CONCLUSIONS Our findings suggested that ARHGAP39 can be used as a potential therapeutic target and prognostic biomarker in breast cancer. ARHGAP39 was indeed a determinant factor of immune infiltration.
Collapse
Affiliation(s)
- Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuwei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Siyuan Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Hongyi Cao
- Department of Pathology, the First Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
4
|
Tűzesi Á, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers (Basel) 2023; 15:cancers15041232. [PMID: 36831575 PMCID: PMC9954771 DOI: 10.3390/cancers15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of 'epitranscriptomics' is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar to many other RNA modifications, is strictly regulated by so-called 'writer', 'reader', and 'eraser' protein species. The abundance of genes coding for the expression of these regulator proteins and m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This review explores our current understanding of RNA modifications in glioma biology and the potential of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify these highly complex and heterogeneous brain tumours.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
5
|
FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 2022; 8:598-614. [PMID: 35346615 DOI: 10.1016/j.trecan.2022.02.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in mRNA that affects RNA processing, stability, and translation. Discovered as the first RNA m6A demethylase, the fat mass and obesity-associated protein (FTO) is frequently dysregulated and plays important roles in various types of cancers. Targeting FTO holds promising therapeutic significance via suppressing tumor growth, potentiating immunotherapy, and attenuating drug resistance. Here, we review recent advances in our understanding of the functions and underlying molecular mechanisms of FTO in tumor development, cancer stem cell (CSC) self-renewal, microenvironment regulation, immunity, and metabolism and discuss the therapeutic potential of targeting FTO for cancer treatment.
Collapse
|
6
|
Grisanti S, Cosentini D, Sigala S, Berruti A. Molecular genotyping of adrenocortical carcinoma: a systematic analysis of published literature 2019-2021. Curr Opin Oncol 2022; 34:19-28. [PMID: 34669649 PMCID: PMC10863665 DOI: 10.1097/cco.0000000000000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW comprehensive molecular characterization of adrenocortical carcinoma (ACC) through next-generation sequencing and bioinformatics analyses is expanding the number of targets with potential prognostic and therapeutic value. We performed a critical review of recent published literature on genotyping of ACC. RECENT FINDINGS 423 studies were published between 2019 and 2021. After manual curation we summarized selected evidence in two thematic areas: germline deoxyribonucleic acid (DNA) variations, genomic alterations and prognosis. SUMMARY the evolving genomic landscape of ACC requires target validation in terms of prognostic and predictive value within scientific consortia. Although the existing multiple driver genes are difficult targets in the perspective of precision oncology, alterations in DNA damage repair genes or in promoter hypermethylation could open new venues for repurposing of existing drugs in ACC.
Collapse
Affiliation(s)
- Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili
| |
Collapse
|