1
|
Cao J, Pan P, Feng D, Wang M, Zheng Y, Yang N, Chen X, Zhai W, Zhang R, Ma Q, Wei J, Yang D, He Y, Wang X, Feng S, Han M, Jiang E, Pang A. Posaconazole gastro-resistant tablets for preventing invasive fungal disease after haematopoietic stem cell transplantation: a propensity-matched cohort study. Clin Microbiol Infect 2024; 30:1585-1591. [PMID: 39067514 DOI: 10.1016/j.cmi.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To evaluate posaconazole (POS) gastro-resistant tablets for preventing invasive fungal disease (IFD) in haematopoietic stem cell transplantation (HSCT) patients and analyse POS plasma concentrations. METHODS A single-arm trial was designed with a historical cohort as a control. Patients aged 13 years and older undergoing HSCT at the HSCT Center of Blood Diseases Hospital, Chinese Academy of Medical Sciences between December 2020 and May 2022 were enrolled, prospectively taking POS gastro-resistant tablets orally from day 1 to day 90 post-transplant and monitoring plasma concentrations. We also identified a retrospective cohort treated with alternative antifungal prophylaxis between January 2018 and December 2020, matched using propensity score methods. The primary outcome was the cumulative incidence of IFD at day 90 post-transplant. RESULTS The prospective study involved 144 patients receiving POS gastro-resistant tablets for IFD prevention, contrasting with 287 patients receiving non-POS tablets. By day 90 post-transplant, the POS tablet group exhibited a significantly lower cumulative incidence of IFD (2.81%; 95% CI, 0.09-5.50% vs. 7.69%; 95% CI, 4.60-10.78%; p 0.044). Adverse events were comparable between the groups with liver changes in 33/144 (22.92%) vs. 84/287 (29.27%) (p 0.162), and renal injuries in 15/144 (10.41%) vs. 37/287 (12.89%) (p 0.457). Mean POS plasma concentrations on days 4, 8, 15, and 22 post-administration were 930.97 ng/mL, 1143.97 ng/mL, 1569.8 ng/mL, and 1652.57 ng/mL, respectively. DISCUSSION Patients administered POS gastro-resistant tablets for antifungal prophylaxis experienced a lower cumulative incidence of IFD. POS plasma concentrations in HSCT patients stabilized by day 15 of medication.
Collapse
Affiliation(s)
- Jiaxin Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Pan Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Dan Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Nan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaodan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
2
|
Mori G, Diotallevi S, Farina F, Lolatto R, Galli L, Chiurlo M, Acerbis A, Xue E, Clerici D, Mastaglio S, Lupo Stanghellini MT, Ripa M, Corti C, Peccatori J, Puoti M, Bernardi M, Castagna A, Ciceri F, Greco R, Oltolini C. High-Risk Neutropenic Fever and Invasive Fungal Diseases in Patients with Hematological Malignancies. Microorganisms 2024; 12:117. [PMID: 38257945 PMCID: PMC10818361 DOI: 10.3390/microorganisms12010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Invasive fungal diseases (IFDs) still represent a relevant cause of mortality in patients affected by hematological malignancies, especially acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) undergoing remission induction chemotherapy, and in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Mold-active antifungal prophylaxis (MAP) has been established as a standard of care. However, breakthrough IFDs (b-IFDs) have emerged as a significant issue, particularly invasive aspergillosis and non-Aspergillus invasive mold diseases. Here, we perform a narrative review, discussing the major advances of the last decade on prophylaxis, the diagnosis of and the treatment of IFDs in patients with high-risk neutropenic fever undergoing remission induction chemotherapy for AML/MDS and allo-HSCT. Then, we present our single-center retrospective experience on b-IFDs in 184 AML/MDS patients undergoing high-dose chemotherapy while receiving posaconazole (n = 153 induction treatments, n = 126 consolidation treatments, n = 60 salvage treatments). Six cases of probable/proven b-IFDs were recorded in six patients, with an overall incidence rate of 1.7% (6/339), which is in line with the literature focused on MAP with azoles. The incidence rates (IRs) of b-IFDs (95% confidence interval (95% CI), per 100 person years follow-up (PYFU)) were 5.04 (0.47, 14.45) in induction (n = 2), 3.25 (0.0013, 12.76) in consolidation (n = 1) and 18.38 (3.46, 45.06) in salvage chemotherapy (n = 3). Finally, we highlight the current challenges in the field of b-IFDs; these include the improvement of diagnoses, the expanding treatment landscape of AML with molecular targeted drugs (and related drug-drug interactions with azoles), evolving transplantation techniques (and their related impacts on IFDs' risk stratification), and new antifungals and their features (rezafungin and olorofim).
Collapse
Affiliation(s)
- Giovanni Mori
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, Ospedale Santa Chiara, 38122 Trento, Italy
| | - Sara Diotallevi
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Francesca Farina
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Riccardo Lolatto
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Laura Galli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Matteo Chiurlo
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Andrea Acerbis
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisabetta Xue
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Centre for Immuno-Oncology, National Cancer Institute, Eliminate NIH, Bethesda, MD 20850, USA
| | - Daniela Clerici
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Mastaglio
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Marco Ripa
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Consuelo Corti
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jacopo Peccatori
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Puoti
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, 20161 Milan, Italy
- Faculty of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Massimo Bernardi
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Castagna
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Fabio Ciceri
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Oltolini
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, 20161 Milan, Italy
| |
Collapse
|
3
|
Soldi LR, Coelho YNB, Paranhos LR, Silva MJB. The impact of antifungal prophylaxis in patients diagnosed with acute leukemias undergoing induction chemotherapy: a systematic review and meta-analysis. Clin Exp Med 2023; 23:3231-3249. [PMID: 37058186 DOI: 10.1007/s10238-023-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Acute leukemias are complex diseases to treat and have a high mortality rate. The immunosuppression caused by chemotherapy also causes the patient to become susceptible to a variety of infections, including invasive fungal infections. Protocols established in many countries attempt to prevent these infections through the use of pharmacological antifungal prophylaxis. This systematic review and meta-analysis investigates the existing evidence for the use of antifungal prophylaxis in patients undergoing induction chemotherapy for acute leukemia, and how prophylaxis can affect treatment response and mortality. Through the use of a population-variable-outcome strategy, keywords were utilized to search online databases. The included studies were selected and the data was collected to develop descriptive results for all studies, and, for studies that met the criteria, a meta-analysis of the Relative Risk (RR) was analyzed for infection rates, in-hospital mortality, and complete remission. A total of 33 studies were included in this systematic review, with most studies presenting positive results (n = 28/33) from the use of antifungal prophylaxis. Using a random effects model, the pooled results of the meta-analysis presented lower invasive fungal infections in AML (RR: 0.527 (95% CI: 0.391; 0.709). p < 0.001). p < 0.001) and ALL (RR: 0.753 (95% CI: 0.574; 0.988). p = 0.041). when antifungal prophylaxis was used. No discernible difference was encountered in the rate of complete remission when using prophylaxis. Antifungal prophylaxis provides a lower risk of invasive fungal infections and in-hospital mortality in acute leukemia patients undergoing induction chemotherapy.
Collapse
Affiliation(s)
- Luiz Ricardo Soldi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, Minas Gerais, Brazil.
- Student of the Graduate Program in Applied Immunology and Parasitology, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| | - Yasmin Nascimento Bernardes Coelho
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Student of the Graduate Program in Applied Immunology and Parasitology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Luiz Renato Paranhos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcelo José Barbosa Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, Minas Gerais, Brazil
- Professor responsible for the area of Immunology at the Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
4
|
Calle-Miguel L, Garrido-Colino C, Santiago-García B, Moreno Santos MP, Gonzalo Pascual H, Ponce Salas B, Beléndez Bieler C, Navarro Gómez M, Guinea Ortega J, Rincón-López EM. Changes in the epidemiology of invasive fungal disease in a Pediatric Hematology and Oncology Unit: the relevance of breakthrough infections. BMC Infect Dis 2023; 23:348. [PMID: 37226103 DOI: 10.1186/s12879-023-08314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Invasive fungal disease (IFD) is a significant cause of morbimortality in children under chemotherapy or hematopoietic stem cell transplant (HSCT). The purpose of this study is to describe the changes in the IFD epidemiology that occurred in a Pediatric Hematology-Oncology Unit (PHOU) with an increasing activity over time. METHODS Retrospective revision of the medical records of children (from 6 months to 18 years old) diagnosed with IFD in the PHOU of a tertiary hospital in Madrid (Spain), between 2006 and 2019. IFD definitions were performed according to the EORTC revised criteria. Prevalence, epidemiological, diagnostic and therapeutic parameters were described. Comparative analyses were conducted using Chi-square, Mann-Whitney and Kruskal-Wallis tests, according to three time periods, the type of infection (yeast vs mold infections) and the outcome. RESULTS Twenty-eight episodes of IFD occurred in 27 out of 471 children at risk (50% males; median age of 9.8 years old, [IQR 4.9-15.1]), resulting in an overall global prevalence of 5.9%. Five episodes of candidemia and 23 bronchopulmonary mold diseases were registered. Six (21.4%), eight (28.6%) and 14 (50%) episodes met criteria for proven, probable and possible IFD, respectively. 71.4% of patients had a breakthrough infection, 28.6% required intensive care and 21.4% died during treatment. Over time, bronchopulmonary mold infections and breakthrough IFD increased (p=0.002 and p=0.012, respectively), occurring in children with more IFD host factors (p=0.028) and high-risk underlying disorders (p=0.012). A 64% increase in the number of admissions in the PHOU (p<0.001) and a 277% increase in the number of HSCT (p=0.008) were not followed by rising rates of mortality or IFD/1000 admissions (p=0.674). CONCLUSIONS In this study, we found that yeast infections decreased, while mold infections increased over time, being most of them breakthrough infections. These changes are probably related to the rising activity in our PHOU and an increase in the complexity of the baseline pathologies of patients. Fortunately, these facts were not followed by an increase in IFD prevalence or mortality rates.
Collapse
Affiliation(s)
- Laura Calle-Miguel
- Pediatric Infectious Diseases Section. Pediatrics Department. Hospital Materno, Infantil Gregorio Marañón. C/ O', Donnell 48-50, 28009, Madrid, Spain.
| | - Carmen Garrido-Colino
- Hospital General Universitario Gregorio Marañón (Pediatric Hematology and Oncology Unit. Pediatrics Department), Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Begoña Santiago-García
- Hospital General Universitario Gregorio Marañón (Pediatric Infectious Diseases Unit. Pediatrics Department), CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Martha Patricia Moreno Santos
- Pediatric Infectious Diseases Section. Pediatrics Department. Hospital Materno, Infantil Gregorio Marañón. C/ O', Donnell 48-50, 28009, Madrid, Spain
| | - Henar Gonzalo Pascual
- Pediatric Infectious Diseases Section. Pediatrics Department. Hospital Materno, Infantil Gregorio Marañón. C/ O', Donnell 48-50, 28009, Madrid, Spain
| | - Beatriz Ponce Salas
- Hospital General Universitario Gregorio Marañón (Pediatric Hematology and Oncology Unit. Pediatrics Department), Madrid, Spain
| | - Cristina Beléndez Bieler
- Hospital General Universitario Gregorio Marañón (Pediatric Hematology and Oncology Unit. Pediatrics Department), Madrid, Spain
| | - Marisa Navarro Gómez
- Complutense University of Madrid, Madrid, Spain
- Hospital General Universitario Gregorio Marañón (Pediatric Infectious Diseases Unit. Pediatrics Department), CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Guinea Ortega
- Complutense University of Madrid, Madrid, Spain
- Hospital General Universitario Gregorio Marañón (Clinical Microbiology and Infectious Diseases Department), Madrid, Spain
| | - Elena María Rincón-López
- Hospital General Universitario Gregorio Marañón (Pediatric Infectious Diseases Unit. Pediatrics Department), CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Ehrlich S, Spiekermann K, Grothe JH, Stemler J. Infektionen bei Patient*innen mit Akuter Myeloischer Leukämie. Dtsch Med Wochenschr 2023; 148:467-473. [PMID: 36990119 DOI: 10.1055/a-1873-4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Infections represent one of the most frequent complications during therapy of acute myeloid leukemia (AML). In addition to associated prolonged phases of neutropenia, damage to the mucosal barrier by cytotoxic agents favors infections caused by endogenous pathogens. The source often remains unknown with bacteremia being the most common evidence of infection. Infections with gram-positive bacteria predominate, however, infections with gram-negative bacteria more often lead to sepsis and death. Due to prolonged neutropenia, patients with AML are furthermore at risk for invasive fungal infections. Viruses, on the other hand, are rarely the cause of neutropenic fever. Because of the limited inflammatory response in neutropenic patients, fever is often the only sign of infection and therefore always represents a hematologic emergency. Prompt diagnosis and initiation of an adequate anti-infective therapy are critical to avoid progression to sepsis and possibly death.
Collapse
|