1
|
Al-Dekah AM, Sweileh W. Role of artificial intelligence in early identification and risk evaluation of non-communicable diseases: a bibliometric analysis of global research trends. BMJ Open 2025; 15:e101169. [PMID: 40316361 PMCID: PMC12049965 DOI: 10.1136/bmjopen-2025-101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
OBJECTIVE This study aims to shed light on the transformative potential of artificial intelligence (AI) in the early detection and risk assessment of non-communicable diseases (NCDs). STUDY DESIGN Bibliometric analysis. SETTING Articles related to AI in early identification and risk evaluation of NCDs from 2000 to 2024 were retrieved from the Scopus database. METHODS This comprehensive bibliometric study focuses on a single database, Scopus and employs narrative synthesis for concise yet informative summaries. Microsoft Excel V.365 and VOSviewer software (V.1.6.20) were used to summarise bibliometric features. RESULTS The study retrieved 1745 relevant articles, with a notable surge in research activity in recent years. Core journals included Scientific Reports and IEEE Access, and core institutions included the Harvard Medical School and the Ministry of Education of the People's Republic of China, while core countries comprised China, the USA, India, the UK and Saudi Arabia. Citation trends indicated substantial growth and recognition of AI's impact on NCDs management. Frequent author keywords identified key research hotspots, including specific NCDs like Alzheimer's disease and diabetes. Risk assessment studies demonstrated improved predictions for heart failure, cardiovascular risk, breast cancer, diabetes and inflammatory bowel disease. CONCLUSION Our findings highlight the increasing role of AI in early detection and risk prediction of NCDs, emphasising its widening research impact and future clinical potential.
Collapse
Affiliation(s)
- Arwa M Al-Dekah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology Faculty of Science and Art, Irbid, Jordan
| | - Waleed Sweileh
- Al-Najah National University, Nablus, Palestine, State of
| |
Collapse
|
2
|
Doherty G, Hughes C, McConnell J, Bond R, McLaughlin L, McFadden S. Integrating AI into medical imaging curricula: Insights from UK HEIs. Radiography (Lond) 2025; 31:102957. [PMID: 40280036 DOI: 10.1016/j.radi.2025.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION With artificial intelligence (AI) becoming increasingly integrated into medical imaging, the Health and Care Professions Council (HCPC) updated its Standards of Proficiency for Radiographers in Autumn 2023. These changes require clinicians to be both competent and confident in operating AI and related technologies within their role. Responsibility for meeting these standards extends beyond individual clinicians to higher education institutions (HEIs), which play a crucial role in preparing future professionals. This study examines the current and planned provision of AI education for medical imaging students and staff, identifying potential challenges in its implementation. METHODS An electronic survey was developed and hosted on the Joint Information Systems Committee (JISC) platform. It was disseminated in April 2023 by the Society of Radiographers to UK HEIs offering medical imaging programmes. RESULTS 24 HEIs responded, with representation from all four UK nations. Of these, 71 % (n = 17) had already integrated AI into their curriculum. Reported challenges included timetabling constraints and the need to upskill staff. 21 % (n = 5) indicated that AI would be incorporated following course revalidation in the 2024/25 academic year, while the remaining two HEIs were unaware of planned changes. CONCLUSION Most UK HEIs have begun integrating AI education into medical imaging programmes. However, significant disparities exist in the depth and scope of AI content across institutions. Further efforts are needed to develop a comprehensive and standardised AI curriculum for medical imaging in the UK. IMPLICATIONS FOR PRACTICE This study highlights key areas for improvement in AI education within medical imaging programmes. Further research into content and delivery methods is essential to ensure radiography professionals adequately equipped to navigate the evolving clinical environment.
Collapse
Affiliation(s)
- G Doherty
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom.
| | - C Hughes
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - J McConnell
- University of Salford, School of Health and Society, United Kingdom
| | - R Bond
- Ulster University, School of Computing, Faculty of Computing, Engineering and the Built Environment, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - L McLaughlin
- Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Cork, Ireland
| | - S McFadden
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Doherty G, McLaughlin L, Hughes C, McConnell J, Bond R, McFadden S. Radiographer Education and Learning in Artificial Intelligence (REAL-AI): A survey of radiographers, radiologists, and students' knowledge of and attitude to education on AI. Radiography (Lond) 2024; 30 Suppl 2:79-87. [PMID: 39481214 DOI: 10.1016/j.radi.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION In Autumn 2023, amendments to the Health and Care Professions Councils (HCPC) Standards of Proficiency for Radiographers were introduced requiring clinicians to demonstrate awareness of the principles of AI and deep learning technology, and its application to practice' (HCPC 2023; standard 12.25). With the rapid deployment of AI in departments, staff must be prepared to implement and utilise AI. AI readiness is crucial for adoption, with education as a key factor in overcoming fear and resistance. This survey aimed to assess the current understanding of AI among students and qualified staff in clinical practice. METHODS A survey targeting radiographers (diagnostic and therapeutic), radiologists and students was conducted to gather demographic data and assess awareness of AI in clinical practice. Hosted online via JISC, the survey included both closed and open-ended questions and was launched in March 2023 at the European Congress of Radiology (ECR). RESULTS A total of 136 responses were collected from participants across 25 countries and 5 continents. The majority were diagnostic radiographers 56.6 %, followed by students 27.2 %, dual-qualified 3.7 % and radiologists 2.9 %. Of the respondents, 30.1 % of respondents indicated that their highest level of qualification was a Bachelor's degree, 29.4 % stated that they are currently using AI in their role, whilst 27 % were unsure. Only 10.3 % had received formal AI training. CONCLUSION This study reveals significant gaps in training and understanding of AI among medical imaging staff. These findings will guide further research into AI education for medical imaging professionals. IMPLICATIONS FOR PRACTICE This paper lays foundations for future qualitative studies on the provision of AI education for medical imaging professionals, helping to prepare the workforce for the evolving role of AI in medical imaging.
Collapse
Affiliation(s)
- G Doherty
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom.
| | - L McLaughlin
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - C Hughes
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - J McConnell
- University of Salford, School of Health and Society, Allerton Building, Manchester, United Kingdom
| | - R Bond
- Ulster University, School of Computing, Faculty of Computing, Engineering and the Built Environment, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - S McFadden
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Daum N, Blaivas M, Goudie A, Hoffmann B, Jenssen C, Neubauer R, Recker F, Moga TV, Zervides C, Dietrich CF. Student ultrasound education, current view and controversies. Role of Artificial Intelligence, Virtual Reality and telemedicine. Ultrasound J 2024; 16:44. [PMID: 39331224 PMCID: PMC11436506 DOI: 10.1186/s13089-024-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 09/28/2024] Open
Abstract
The digitization of medicine will play an increasingly significant role in future years. In particular, telemedicine, Virtual Reality (VR) and innovative Artificial Intelligence (AI) systems offer tremendous potential in imaging diagnostics and are expected to shape ultrasound diagnostics and teaching significantly. However, it is crucial to consider the advantages and disadvantages of employing these new technologies and how best to teach and manage their use. This paper provides an overview of telemedicine, VR and AI in student ultrasound education, presenting current perspectives and controversies.
Collapse
Affiliation(s)
- Nils Daum
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
- Brandenburg Institute for Clinical Ultrasound (BICUS) at Brandenburg Medical University, Neuruppin, Germany
| | - Michael Blaivas
- Department of Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Beatrice Hoffmann
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christian Jenssen
- Brandenburg Institute for Clinical Ultrasound (BICUS) at Brandenburg Medical University, Neuruppin, Germany
- Department for Internal Medicine, Krankenhaus Märkisch Oderland, Strausberg, Germany
| | | | - Florian Recker
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Tudor Voicu Moga
- Department of Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Piața Eftimie Murgu 2, 300041, Timișoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, 300041, Timisoara, Romania
| | | | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland.
| |
Collapse
|
5
|
Radiological education in the era of artificial intelligence: A review. Medicine (Baltimore) 2024; 103:e38552. [PMID: 39259133 PMCID: PMC11142765 DOI: 10.1097/md.0000000000038552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
6
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Dos Santos DP, Tang A, Wald C, Slavotinek J. Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement From the ACR, CAR, ESR, RANZCR & RSNA. Can Assoc Radiol J 2024; 75:226-244. [PMID: 38251882 DOI: 10.1177/08465371231222229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever‑growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi‑society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, AL, USA
- Data Science Institute, American College of Radiology, Reston, VA, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, CA, USA
- Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, CA, USA
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
- Tufts University Medical School, Boston, MA, USA
- American College of Radiology, Reston, VA, USA
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Doherty G, McLaughlin L, Hughes C, McConnell J, Bond R, McFadden S. A scoping review of educational programmes on artificial intelligence (AI) available to medical imaging staff. Radiography (Lond) 2024; 30:474-482. [PMID: 38217933 DOI: 10.1016/j.radi.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Medical imaging is arguably the most technologically advanced field in healthcare, encompassing a range of technologies which continually evolve as computing power and human knowledge expand. Artificial Intelligence (AI) is the next frontier which medical imaging is pioneering. The rapid development and implementation of AI has the potential to revolutionise healthcare, however, to do so, staff must be competent and confident in its application, hence AI readiness is an important precursor to AI adoption. Research to ascertain the best way to deliver this AI-enabled healthcare training is in its infancy. The aim of this scoping review is to compare existing studies which investigate and evaluate the efficacy of AI educational interventions for medical imaging staff. METHODS Following the creation of a search strategy and keyword searches, screening was conducted to determine study eligibility. This consisted of a title and abstract scan, then subsequently a full-text review. Articles were included if they were empirical studies wherein an educational intervention on AI for medical imaging staff was created, delivered, and evaluated. RESULTS Of the initial 1309 records returned, n = 5 (∼0.4 %) of studies met the eligibility criteria of the review. The curricula and delivery in each of the five studies shared similar aims and a 'flipped classroom' delivery was the most utilised method. However, the depth of content covered in the curricula of each varied and measured outcomes differed greatly. CONCLUSION The findings of this review will provide insights into the evaluation of existing AI educational interventions, which will be valuable when planning AI education for healthcare staff. IMPLICATIONS FOR PRACTICE This review highlights the need for standardised and comprehensive AI training programs for imaging staff.
Collapse
Affiliation(s)
- G Doherty
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom.
| | - L McLaughlin
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - C Hughes
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - J McConnell
- Leeds Teaching Hospitals NHS Trust, United Kingdom
| | - R Bond
- Ulster University, School of Computing, Faculty of Computing, Engineering and the Built Environment, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| | - S McFadden
- Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom
| |
Collapse
|
8
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Pinto Dos Santos D, Tang A, Wald C, Slavotinek J. Developing, purchasing, implementing and monitoring AI tools in radiology: Practical considerations. A multi-society statement from the ACR, CAR, ESR, RANZCR & RSNA. J Med Imaging Radiat Oncol 2024; 68:7-26. [PMID: 38259140 DOI: 10.1111/1754-9485.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, Alabama, USA
- American College of Radiology Data Science Institute, Reston, Virginia, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, California, USA
- Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, California, USA
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, Massachusetts, USA
- Tufts University Medical School, Boston, Massachusetts, USA
- Commision On Informatics, and Member, Board of Chancellors, American College of Radiology, Reston, Virginia, USA
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Dos Santos DP, Tang A, Wald C, Slavotinek J. Developing, purchasing, implementing and monitoring AI tools in radiology: practical considerations. A multi-society statement from the ACR, CAR, ESR, RANZCR & RSNA. Insights Imaging 2024; 15:16. [PMID: 38246898 PMCID: PMC10800328 DOI: 10.1186/s13244-023-01541-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones.This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.Key points • The incorporation of artificial intelligence (AI) in radiological practice demands increased monitoring of its utility and safety.• Cooperation between developers, clinicians, and regulators will allow all involved to address ethical issues and monitor AI performance.• AI can fulfil its promise to advance patient well-being if all steps from development to integration in healthcare are rigorously evaluated.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, AL, USA
- American College of Radiology Data Science Institute, Reston, VA, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, CA, USA
- Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, CA, USA
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
- Tufts University Medical School, Boston, MA, USA
- Commision On Informatics, and Member, Board of Chancellors, American College of Radiology, Virginia, USA
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
10
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, dos Santos DP, Tang A, Wald C, Slavotinek J. Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement from the ACR, CAR, ESR, RANZCR and RSNA. Radiol Artif Intell 2024; 6:e230513. [PMID: 38251899 PMCID: PMC10831521 DOI: 10.1148/ryai.230513] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. This article is simultaneously published in Insights into Imaging (DOI 10.1186/s13244-023-01541-3), Journal of Medical Imaging and Radiation Oncology (DOI 10.1111/1754-9485.13612), Canadian Association of Radiologists Journal (DOI 10.1177/08465371231222229), Journal of the American College of Radiology (DOI 10.1016/j.jacr.2023.12.005), and Radiology: Artificial Intelligence (DOI 10.1148/ryai.230513). Keywords: Artificial Intelligence, Radiology, Automation, Machine Learning Published under a CC BY 4.0 license. ©The Author(s) 2024. Editor's Note: The RSNA Board of Directors has endorsed this article. It has not undergone review or editing by this journal.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical
Center, Birmingham, AL, USA
- American College of Radiology Data Science
Institute, Reston, VA, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich
School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and
Interventional Radiology, Medical Center, Faculty of Medicine, University of
Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, CA,
USA
- Stanford Center for Artificial
Intelligence in Medicine & Imaging, Palo Alto, CA, USA
| | - John Mongan
- Department of Radiology and Biomedical
Imaging, University of California, San Francisco, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning,
University of Adelaide, Adelaide, Australia
| | - Daniel Pinto dos Santos
- Department of Radiology, University
Hospital of Cologne, Cologne, Germany
- Department of Radiology, University
Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation
Oncology, and Nuclear Medicine, Université de Montréal,
Montréal, Québec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital
& Medical Center, Burlington, MA, USA
- Tufts University Medical School, Boston,
MA, USA
- Commission On Informatics, and Member,
Board of Chancellors, American College of Radiology, Virginia, USA
| | - John Slavotinek
- South Australia Medical Imaging,
Flinders Medical Centre Adelaide, Adelaide, Australia
- College of Medicine and Public Health,
Flinders University, Adelaide, Australia
| |
Collapse
|