1
|
Cui Y, Mei J, Zhao S, Zhu B, Lu J, Li H, Bai B, Sun W, Jin W, Zhu X, Rao S, Yi Y. Identification of a PANoptosis-related long noncoding rna risk signature for prognosis and immunology in colon adenocarcinoma. BMC Cancer 2025; 25:662. [PMID: 40211224 PMCID: PMC11987197 DOI: 10.1186/s12885-025-14021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND PANoptosis, a complex programmed cell death (PCD) pathway that includes apoptosis, pyroptosis and necroptosis, is significantly involved in the progression of cancers. Long noncoding RNAs (lncRNAs) play crucial roles in PCD. However, the predictive value of PANoptosis-related lncRNAs (PRlncRNAs) for colon adenocarcinoma (COAD) has not been established. METHODS Gene expression data and clinical characteristics of patients with COAD were obtained from The Cancer Genome Atlas database. Differential expression analysis and Pearson correlation analysis were used to identify PRlncRNAs. In addition to least absolute shrinkage and selection operator, univariate and multivariate Cox regression analyses were employed to obtain PRlncRNAs for constructing a risk signature. Patients with COAD in the training set, testing set and entire set were stratified into high- and low-risk groups for further comparison of survival prognosis, using the median risk score as the cut-off point. Time-dependent receiver operating characteristic curves, a nomogram and multivariate Cox regression analysis were conducted to validate the risk signature in the testing set and the entire set. In addition, critical pathways, immune infiltration cells, immune checkpoint-related genes, Tumor Immune Dysfunction and Exclusion (TIDE) scores and antitumour drugs were compared between the two risk groups in the entire set. Correlations between ferroptosis, cuproptosis, disulfidptosis and the PRlncRNA risk score were evaluated. Finally, a competitive endogenous RNA (ceRNA) network was established, and enrichment analysis of the predicted mRNAs was performed using Gene Ontology (GO) analysis. The Kaplan-Meier plotter database was used as an external database to confirm the accuracy of the risk signature in predicting patient prognosis. Additionally, small interfering RNA (siRNA), a cell counting kit- 8 assay, a cell colony formation assay, quantitative polymerase chain reaction (qPCR) and an apoptosis assay were further employed to investigate the roles of AP003555.1 in colon cancer. RESULTS A risk signature comprising four PRlncRNAs (LINC01133, FOXD3-AS1, AP001066.1, and AP003555.1) was developed to predict the prognosis of patients with COAD. Kaplan‒Meier curves demonstrated significant differences in prognosis between the high- and low-risk groups across the three sets. Multivariate Cox regression analysis confirmed that the risk signature was an independent prognostic factor across the three sets. A nomogram, receiver operating characteristic curves and calibration curves indicated strong confidence in the risk signature. Using the CIBERSORT algorithm and gene set enrichment analysis, variations in infiltrating immune cells and immune processes were observed between the two risk groups. Furthermore, TIDE algorithm suggested that the high-risk group exhibited a lower risk of immunotherapy escape and better immunotherapy outcomes than the low-risk group. Distinct responses to various antitumour drugs were observed between the two risk groups. Additionally, we constructed a ceRNA network based on PRlncRNAs, and GO enrichment analysis of the predicted mRNAs revealed different functions. In addition, the results of the Kaplan‒Meier plotter database revealed that patients who exhibited high levels of LINC01133 and FOXD3-AS1 experienced significantly shorter overall survival than those with low levels of these lncRNAs. Specifically, in terms of functionality, AP003555.1 was found to be highly expressed in colon cancer tissue and promoted viability and proliferation while suppressing the apoptosis of colon cancer cells. CONCLUSION We identified a novel risk signature consisting of four PRlncRNAs, which is an independent prognostic indicator for patients with COAD. This PRlncRNA risk signature is potentially relevant for immunotherapy and could serve as a therapeutic target for COAD.
Collapse
Affiliation(s)
- Yuekai Cui
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Mei
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengsheng Zhao
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingzi Zhu
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Lu
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongzheng Li
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binglong Bai
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenyu Jin
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China.
- Wenzhou Medical University, Wenzhou, China.
| | - Shangrui Rao
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yongdong Yi
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Chen W, Huang D, Su X, Su Y, Li S. Bioinformatics analysis and identification of cuproptosis-related long non-coding RNAs in colorectal cancer. J Int Med Res 2024; 52:3000605241274563. [PMID: 39188141 DOI: 10.1177/03000605241274563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVE Identifying precise biomarkers for colorectal cancer (CRC) detection and management remains challenging. Here, we developed an innovative prognostic model for CRC using cuproptosis-related long non-coding RNAs (lncRNAs). METHODS In this retrospective study, CRC patient transcriptomic and clinical data were sourced from The Cancer Genome Atlas database. Cuproptosis-related lncRNAs were identified and used to develop a prognostic model, which helped categorize patients into high- and low-risk groups. The model was validated through survival analysis, risk curves, independent prognostic analysis, receiver operating characteristic curve analysis, decision curves, and nomograms. In addition, we performed various immune-related analyses. LncRNA expression levels were examined in normal human colorectal epithelial cells (FHC) and CRC cells (HCT-116) using quantitative polymerase chain reaction (qPCR). RESULTS Six cuproptosis-related lncRNAs were identified: ZKSCAN2-DT, AL161729.4, AC016394.1, AC007128.2, AL137782.1, and AC099850.3. The prognostic model distinguished between high-/low-risk populations, demonstrating excellent predictive ability for survival outcomes. Immunocorrelation analysis showed significant differences in immune cell infiltration and functions, immune checkpoint expression, and m6A methylation-related genes. The qPCR results showed significant upregulation of ZKSCAN2-DT, AL161729.4, AC016394.1, AC007128.2 in HCT-116 cells, while AL137782.1 and AC099850.3 expression patterns were significantly downregulated. CONCLUSION Cuproptosis-related lncRNAs can potentially serve as reliable diagnostic and prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Anxi County Hospital, Quanzhou, PR China
| | - Dongqin Huang
- Department of Anxi County Hospital, Quanzhou, PR China
| | - Xiaoping Su
- Department of Anxi County Hospital, Quanzhou, PR China
| | - Yuchao Su
- Department of Anxi County Hospital, Quanzhou, PR China
| | - Shaobin Li
- Department of Anxi County Hospital, Quanzhou, PR China
| |
Collapse
|
4
|
Chen T, Jiang Q, Wang Z, Zhang H, Fu Z. The roles of lncRNA AP001469.3 in clinical implications, immune landscape and carcinogenesis of colorectal cancer. Transl Cancer Res 2024; 13:3465-3481. [PMID: 39145049 PMCID: PMC11319950 DOI: 10.21037/tcr-24-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
Background Previously, long non-coding RNA (lncRNA) gene AP001469.3 was reported to participate in the construction of an immune-related lncRNA signature, which showed promising clinical predictive value in colorectal cancer (CRC) patients. However, the clinical and immunological significance and biological function of AP001469.3 in CRC remain unclear. In this study, we aim to explore the roles of AP001469.3 in CRC progression, thereby opening an avenue for CRC treatment. Methods Our study collected data from The Cancer Genome Atlas (TCGA) database and investigated the role of AP001469.3 in CRC through bioinformatics analysis. Cell-type Identification By Estimating Relative Subsets Of known RNA Transcripts (CIBERSORT) and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) methods evaluated the immune infiltration. The biological functions of AP001469.3 in CRC were validated by in vitro experiments. Gene set enrichment analysis (GSEA) was used to estimate the enrichment of functional pathways and gene signatures. Results In this work, high expression of AP001469.3 was found in CRC and was positively associated with tumor-node-metastasis (TNM) stage in CRC. AP001469.3 expression had a strong relationship with microsatellite instability (MSI) in colon adenocarcinoma (COAD). Additionally, AP001469.3 expression was associated with StromalScore, ImmuneScore, ESTIMATEScore, immune cell infiltration (ICI) levels and immune checkpoint (ICP) genes expression in CRC. Subsequent results showed that immunotherapy could be more effective in CRC patients with low-AP001469.3 expression using the immunophenoscore (IPS). We confirmed that the transcript of AP001469.3 gene ENST00000430259 was highly expressed in CRC tissues and cell lines. In vitro experiments indicated that ENST00000430259 knockdown reduced the proliferation, migration and invasion of CRC cells. Finally, our GSEA results showed that the majority of the differentially enriched signaling pathways between the high- and low-AP001469.3 expression groups were immune-related. Conclusions Taken together, our study demonstrates that lncRNA gene AP001469.3 is associated with immunological characteristics in CRC and promotes malignant progression of CRC. Moreover, AP001469.3 can be potentially used as an immunotherapeutic indicator and a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Tao Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Qiusheng Jiang
- Department of General Surgery, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Zhenlin Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongqiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Chen W, Li S, Huang D, Su Y, Wang J, Liang Z. Identification of prognostic RNA editing profiles for clear cell renal carcinoma. Front Med (Lausanne) 2024; 11:1390803. [PMID: 39091293 PMCID: PMC11291244 DOI: 10.3389/fmed.2024.1390803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Objective Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer and currently lacks effective biomarkers. This research aims to analyze and identify RNA editing profile associated with ccRCC prognosis through bioinformatics and in vitro experiments. Methods Transcriptome data and clinical information for ccRCC were retrieved from the TCGA database, and RNA editing files were obtained from the Synapse database. Prognostic models were screened, developed, and assessed using consistency index analysis and independent prognostic analysis, etc. Internal validation models were also constructed for further evaluation. Differential genes were investigated using GO, KEGG, and GSEA enrichment analyses. Furthermore, qPCR was performed to determine gene expression in human renal tubular epithelial cells HK-2 and ccRCC cells A-498, 786-O, and Caki-2. Results An RNA editing-based risk score, that effectively distinguishes between high and low-risk populations, has been identified. It includes CHD3| chr17:7815229, MYO19| chr17:34853704, OIP5-AS1| chr15:41590962, MRI1| chr19:13883962, GBP4| chr1:89649327, APOL1| chr22:36662830, FCF1| chr14:75203040 edited sites or genes and could serve as an independent prognostic factor for ccRCC patients. qPCR results showed significant up-regulation of CHD3, MYO19, MRI1, APOL1, and FCF1 in A-498, 786-O, and Caki-2 cells, while the expression of OIP5-AS1 and GBP4 was significantly down-regulated. Conclusion RNA editing site-based prognostic models are valuable in differentiating between high and low-risk populations. The seven identified RNA editing sites may be utilized as potential biomarkers for ccRCC.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Anxi County Hospital, Quanzhou, China
| | - Shaobin Li
- Department of Anxi County Hospital, Quanzhou, China
| | | | - Yuchao Su
- Department of Anxi County Hospital, Quanzhou, China
| | - Jing Wang
- Xilin Gol League Central Hospital, Xilin Hot, China
| | - Zhiru Liang
- Xilin Gol League Central Hospital, Xilin Hot, China
| |
Collapse
|
6
|
Sun Z, Wang H, Xu Y, Liu Y, Wang L, Zhou R, Zhou R, Ma W, Zhang T. High expression of NXPH4 correlates with poor prognosis, metabolic reprogramming, and immune infiltration in colon adenocarcinoma. J Gastrointest Oncol 2024; 15:641-667. [PMID: 38756632 PMCID: PMC11094489 DOI: 10.21037/jgo-23-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Colon adenocarcinoma (COAD) is a prevalent gastrointestinal malignant disease with high mortality rate, and identification of novel prognostic biomarkers and therapeutic targets is urgently needed. Although neurexophilin 4 (NXPH4) has been investigated in several tumors, its role in COAD remains unclear. The aim of this study was to explore the prognostic value and potential functions of NXPH4 in COAD. Methods The expression of NXPH4 in COAD were analyzed using The Cancer Genome Atlas (TCGA) and datasets from the Gene Expression Omnibus (GEO) database. The prognostic value of NXPH4 was determined using Kaplan-Meier analysis and Cox regression analysis. To investigate the possible mechanism underlying the role of NXPH4 in COAD, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were employed. The correlation between NXPH4 expression and immune cell infiltration levels was examined thorough single-sample gene set enrichment analysis (ssGSEA). Furthermore, the competing endogenous RNA (ceRNA) regulatory network that may be involved in NXPH4 in COAD was predicted and constructed through a variety of databases. Results NXPH4 expression was significantly higher in COAD tissue compared with normal colon tissues. Meanwhile, high expression of NXPH4 was associated with poor prognosis in COAD patients. GO-KEGG and GSEA analyses indicated that NXPH4 was associated with glycolysis and hypoxia pathway, and may promote COAD progression and metastasis by modulating metabolic reprogramming. ssGSEA analysis demonstrated that NXPH4 expression also associated with immune infiltration. Furthermore, we identified various microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) as upstream regulators of NXPH4 in COAD. Conclusions The present study revealed that high expression of NXPH4 is associated with tumor progression, metabolic reprogramming, and immune infiltration. These findings suggest that NXPH4 could serve as a reliable prognostic biomarker and a promising therapeutic target in COAD.
Collapse
Affiliation(s)
- Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haodi Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yichi Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Runlong Zhou
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Qilu Institute of Technology, Jinan, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Chen W, Li S, Huang D, Su Y. Drugs associated with a risk of supraventricular tachycardia: analysis using the OpenVigil database. J Int Med Res 2024; 52:3000605241238993. [PMID: 38530149 PMCID: PMC10966986 DOI: 10.1177/03000605241238077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE The OpenVigil database can be used to assess medications that may cause supraventricular tachycardia (SVT) and to produce a reference for their safe use in clinical settings. METHODS We analyzed first-quarter data from 2004 to 2023, obtained by searching the OpenVigil database using the keyword "supraventricular tachycardia." Trade names and generic names were obtained by querying the RxNav database, and the proportions were summarized. The proportionate reporting ratio (PRR), reporting odds ratio, and chi-square values were also summarized. We created Asahi diagrams and set the screening criteria to drug events ≥30, PRR >2, and chi-square >4. Outcomes were evaluated using the Side Effect Resource database, several scientific literature databases, and the Hangzhou Yiyao Rational Medication System. RESULTS A total of 2435 distinct medications were found to induce SVT between the first quarter of 2004 and 2023, leading to 22,375 documented adverse events related to SVT. Further investigation revealed that salbutamol, paroxetine, formoterol, paclitaxel, venlafaxine, and theophylline were most likely to cause SVT. CONCLUSION We conducted signal mining of adverse drug events using the OpenVigil database and evaluated the six drugs most likely to cause SVT. The results of this research can serve as a drug safety reference in the clinic.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Anxi County Hospital, Quanzhou, China
| | - Shaobin Li
- Department of Anxi County Hospital, Quanzhou, China
| | | | - Yuchao Su
- Department of Anxi County Hospital, Quanzhou, China
| |
Collapse
|