1
|
Li R, Guan L, Liu Y, Hu Z, Liu J, Li C, Min H. The roles of vitamin C in infectious diseases: A comprehensive review. Nutrition 2025; 134:112733. [PMID: 40154019 DOI: 10.1016/j.nut.2025.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Vitamin C is a versatile nutrient with essential antioxidant properties and roles in amino acid metabolism, collagen promotion, and hormone synthesis. It has long been regarded as benefitting infectious disease management, although its specific roles remain uncertain. The dominant view is that this efficacy not only stems from its redox regulation in the body but also from its profound impact on the immune system. This review provides a comprehensive overview of Vitamin C's effects on redox regulation and shows how the vitamin influences various immune cells and cell-intrinsic innate immunity signaling pathways, thereby updating and expanding our previous perspectives. Clinically, though some studies and case series have suggested potential benefits of Vitamin C in preventing and (or) treating respiratory tract infections and sepsis and septic shock, the evidence remains controversial. The current data is insufficient to support the routine clinical use of Vitamin C in managing these diseases and requires further rigorous evaluation to establish definitive efficacy and safety profiles. This review thoroughly examines current clinical research progress on Vitamin C, summarizes the primary controversies and their underlying causes, and proposes directions for future clinical research. Furthermore, preclinical evidence shows potential roles for Vitamin C in the supplementary treatment of the "Big Three" infectious diseases: acquired immunodeficiency syndrome (AIDS), tuberculosis, and malaria; however, systematic clinical studies in these areas are lacking. We examine related in vitro and animal studies, as well as clinical trials, and discuss potential roles for Vitamin C as a treatment and (or) adjuvant therapy.
Collapse
Affiliation(s)
- Runze Li
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Liangchao Guan
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Yue Liu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Zongyi Hu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Junyu Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Cheng Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Wei Z, Liu Y, Mei X, Zhong J, Huang F. Circulating micronutrient levels and their association with sepsis susceptibility and severity: a Mendelian randomization study. Front Genet 2024; 15:1353118. [PMID: 38435062 PMCID: PMC10904592 DOI: 10.3389/fgene.2024.1353118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Sepsis, a global health challenge, necessitates a nuanced understanding of modifiable factors for effective prevention and intervention. The role of trace micronutrients in sepsis pathogenesis remains unclear, and their potential connection, especially with genetic influences, warrants exploration. Methods: We employed Mendelian randomization (MR) analyses to assess the causal relationship between genetically predicted blood levels of nine micronutrients (calcium, β-carotene, iron, magnesium, phosphorus, vitamin C, vitamin B6, vitamin D, and zinc) and sepsis susceptibility, severity, and subtypes. The instrumental variables for circulating micronutrients were derived from nine published genome-wide association studies (GWAS). In the primary MR analysis, we utilized summary statistics for sepsis from two independent databases (UK Biobank and FinnGen consortium), for initial and replication analyses. Subsequently, a meta-analysis was conducted to merge the results. In secondary MR analyses, we assessed the causal effects of micronutrients on five sepsis-related outcomes (severe sepsis, sepsis-related death within 28 days, severe sepsis-related death within 28 days, streptococcal septicaemia, and puerperal sepsis), incorporating multiple sensitivity analyses and multivariable MR to address potential heterogeneity and pleiotropy. Results: The study revealed a significant causal link between genetically forecasted zinc levels and reduced risk of severe sepsis-related death within 28 days (odds ratio [OR] = 0.450; 95% confidence interval [CI]: 0.263, 0.770; p = 3.58 × 10-3). Additionally, suggestive associations were found for iron (increased risk of sepsis), β-carotene (reduced risk of sepsis death) and vitamin C (decreased risk of puerperal sepsis). No significant connections were observed for other micronutrients. Conclusion: Our study highlighted that zinc may emerges as a potential protective factor against severe sepsis-related death within 28 days, providing theoretical support for supplementing zinc in high-risk critically ill sepsis patients. In the future, larger-scale data are needed to validate our findings.
Collapse
Affiliation(s)
- Zhengxiao Wei
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yingfen Liu
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Xue Mei
- Department of Infectious Diseases, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jing Zhong
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fuhong Huang
- Department of Ultrasound, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Unar A, Bertolino L, Patauner F, Gallo R, Durante-Mangoni E. Decoding Sepsis-Induced Disseminated Intravascular Coagulation: A Comprehensive Review of Existing and Emerging Therapies. J Clin Med 2023; 12:6128. [PMID: 37834771 PMCID: PMC10573475 DOI: 10.3390/jcm12196128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Disseminated intravascular coagulation (DIC) is a recurrent complication of sepsis. Since DIC not only promotes organ dysfunction but also represents a strong prognostic factor, it is important to diagnose DIC as early as possible. When coagulation is activated, fibrinolysis is inhibited, blood thinners are consumed, and a condition is created that promotes blood clotting, making it more difficult for the body to remove fibrin or prevent it from being deposited in the blood vessels. This leads to microvascular thrombosis, which plays a role in organ dysfunction. Despite efforts to understand the underlying mechanisms of sepsis-induced DIC, healthcare providers worldwide still face challenges in effectively treating this condition. In this review, we provide an in-depth analysis of the available strategies for sepsis-induced DIC, considering their effectiveness, limitations, and potential for future advances. Corticosteroids (CS), recombinant thrombomodulin (rTM), vitamin C, fibrinolytic therapy, and platelet transfusion are among the treatments discussed in the review. In addition, we are specifically addressing immunomodulatory therapy (IMT) by investigating treatments such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), and mesenchymal stem cell therapy (MSC). Finally, we also examined how these therapies might affect COVID-19 cases, which often present with sepsis-induced DIC. The review suggests that targeted experiments with randomization are needed to verify the effectiveness of these treatments and to discover novel approaches to treat sepsis-induced DIC. By increasing our knowledge of sepsis-induced DIC, we can develop targeted treatments that have the potential to save lives and improve outcomes.
Collapse
Affiliation(s)
- Ahsanullah Unar
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Fabian Patauner
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
4
|
Yang Q, Feng Z, Ding D, Kang C. CD3D and CD247 are the molecular targets of septic shock. Medicine (Baltimore) 2023; 102:e34295. [PMID: 37478215 PMCID: PMC10662883 DOI: 10.1097/md.0000000000034295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Septic shock is a serious systemic disease with circulatory failure and abnormal cell metabolism caused by sepsis. However, the relationship between CD3D and CD247 and septic shock remains unclear. The septic shock datasets GSE33118 and GSE142255 profiles were generated from the gene expression omnibus databases GPl570, GPl17586. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. Gene expression heat map was drawn. Immune infiltration analysis was performed. Comparative toxicogenomics database (CTD) analysis were performed to find the disease most related to the core gene. Targets can was used to screen miRNAs regulating the hub DEGs. 467 DEGs were identified. According to the gene ontology analysis, they were mainly enriched in the regulation of immune response, cell activation, signaling receptor activity, enzyme binding. Kyoto encyclopedia of genes and genomes analysis showed that they were mainly enriched in the TCR signaling pathway, Fc epsilon RI signaling pathway. GSEA showed that the DEGs were mainly enriched in immune response regulation, cell activation, TCR signaling pathway, Fc epsilon RI signaling pathway. Positive regulation of Fc receptor signaling pathway, PID IL12 2 pathway, immune response was observed in go enrichment items in the enrichment items of metascape. PPI networks got 5 core genes. Gene expression heat map showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were lowly expressed in the sepsis shock samples and highly expressed in the normal samples. CTD analysis showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were found to be associated with hemorrhage and necrosis. Low expression of cd3d, CD247 was observed in septic shock, and the lower the level of cd3d, CD247, the worse the prognosis.
Collapse
Affiliation(s)
- Qian Yang
- Intensive Care Unit, Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhijuan Feng
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, China
| | - Danyang Ding
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Hung KC, Chuang MH, Chen JY, Hsu CW, Chiu CC, Chang YJ, Lee CW, Chen IW, Sun CK. Impact of intravenous vitamin C as a monotherapy on mortality risk in critically ill patients: A meta-analysis of randomized controlled trials with trial sequential analysis. Front Nutr 2023; 10:1094757. [PMID: 37051117 PMCID: PMC10083893 DOI: 10.3389/fnut.2023.1094757] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND This meta-analysis aimed at investigating the pooled evidence regarding the effects of intravenous vitamin C (IVVC) on mortality rate in critically ill patients. METHODS Databases including Medline, Embase, and Cochrane Library were searched from inception to October, 2022 to identify RCTs. The primary outcome was the risk of overall mortality. Subgroup analyses were performed based on IVVC dosage (i.e., cut-off value: 100 mg/kg/day or 10000 mg/day). Trial sequential analysis (TSA) was used to examine the robustness of evidence. RESULTS A total of 12 trials including 1,712 patients were analyzed. Although meta-analysis demonstrated a lower risk of mortality in patients with IVVC treatment compared to those without [risk ratio (RR): 0.76, 95% CI: 0.6 to 0.97, p = 0.02, I 2 = 36%, 1,711 patients), TSA suggested the need for more studies for verification. Moreover, subgroup analyses revealed a reduced mortality risk associated with a low IVVC dosage (RR = 0.72, p = 0.03, 546 patients), while no beneficial effect was noted with high IVVC dosage (RR = 0.74, p = 0.13, I 2 = 60%, 1,165 patients). The durations of vasopressor [mean difference (MD): -37.75 h, 404 patients) and mechanical ventilation (MD: -47.29 h, 388 patients) use were shorter in the IVVC group than those in the controls, while there was no significant difference in other prognostic outcomes (e.g., length of stay in intensive care unit/hospital) between the two groups. CONCLUSION Although intravenous vitamin C as a monotherapy reduced pooled mortality, durations of vasopressor use and mechanical ventilation, further research is required to support our findings and to identify the optimal dosage of vitamin C in the critical care setting. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42022371090.
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Min-Hsiang Chuang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- Department of Medical Education and Research, E-Da Cancer Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Ying-Jen Chang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chia-Wei Lee
- Department of Neurology, Chi Mei Medical Center, Tainan City, Taiwan
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan City, Taiwan
| | - Cheuk-Kwan Sun
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
6
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
7
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|