1
|
Corica D, Pepe G, Currò M, Aversa T, Tropeano A, Ientile R, Wasniewska M. Methods to investigate advanced glycation end-product and their application in clinical practice. Methods 2021; 203:90-102. [DOI: 10.1016/j.ymeth.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
|
2
|
Prasad K, Mishra M. AGE-RAGE Stress, Stressors, and Antistressors in Health and Disease. Int J Angiol 2017; 27:1-12. [PMID: 29483760 DOI: 10.1055/s-0037-1613678] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adverse effects of advanced glycation end-products (AGEs) on the tissues are through nonreceptor- and receptor-mediated mechanisms. In the receptor-mediated mechanism, interaction of AGEs with its cell-bound receptor of AGE (RAGE) increases generation of oxygen radicals, activates nuclear factor-kappa B, and increases expression and release of pro-inflammatory cytokines resulting in the cellular damage. The deleterious effects of AGE and AGE-RAGE interaction are coined as "AGE-RAGE stress." The body is equipped with defense mechanisms to counteract the adverse effects of AGE and RAGE through endogenous enzymatic (glyoxalase 1, glyoxalase 2) and AGE receptor-mediated (AGER1, AGER2) degradation of AGE, and through elevation of soluble receptor of AGE (sRAGE). Exogenous defense mechanisms include reduction in consumption of AGE, prevention of AGE formation, and downregulation of RAGE expression. We have coined AGE and RAGE as "stressors" and the defense mechanisms as "anti-stressors." AGE-RAGE stress is defined as a shift in the balance between stressors and antistressors in the favor of stressors. Measurements of stressors or antistressors alone would not assess AGE-RAGE stress. For true assessment of AGE-RAGE stress, the equation should include all the stressors and antistressors. The equation for AGE-RAGE stress, therefore, would be the ratio of AGE + RAGE/sRAGE + glyoxalase1 + glyoxalase 2 + AGER1 +AGER2. This is, however, not practical in patients. AGE-RAGE stress may be assessed simply by the ratio of AGE/sRAGE. A high ratio of AGE/sRAGE indicates a relative shift in stressors from antistressors, suggesting the presence of AGE-RAGE stress, resulting in tissue damage, initiation, and progression of the diseases and their complications.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, University of Saskatchewan, College of Medicine, Saskatoon, Canada
| | - Manish Mishra
- Department of Physiology, University of Saskatchewan, College of Medicine, Saskatoon, Canada
| |
Collapse
|
3
|
Prasad K, Mishra M. Do Advanced Glycation End Products and Its Receptor Play a Role in Pathophysiology of Hypertension? Int J Angiol 2017; 26:1-11. [PMID: 28255209 PMCID: PMC5330762 DOI: 10.1055/s-0037-1598183] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a close relationship between arterial stiffness and blood pressure. The studies suggest that the advanced glycation end products (AGEs) and its cell receptor (RAGE) are involved in the arterial stiffness in two ways: changes in arterial structure and vascular function. Plasma levels of AGEs and expression of RAGE are elevated, while the levels of soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) are lowered in patients with hypertension (HTN). There is a positive correlation between plasma levels of AGEs and arterial stiffness, and an inverse association between arterial stiffness/HTN, and serum levels of sRAGE and esRAGE. Various measures can reduce the levels of AGEs and expression of RAGE, and elevate sRAGE. Arterial stiffness and blood pressure could be reduced by lowering the serum levels of AGEs, and increasing the levels of sRAGE. Levels of AGEs can be lowered by reducing the consumption of AGE-rich diet, short duration of cooking in moist heat at low temperature, and cessation of cigarette smoking. Drugs such as aminoguanidine, vitamins, angiotensin-converting enzyme (ACE) inhibitors, angiotensin-II receptor blockers, statins, and metformin inhibit AGE formation. Alagebrium, an AGE breakers reduces levels of AGEs. Clinical trials with some drugs tend to reduce stiffness. Systemic administration of sRAGE has beneficial effect in animal studies. In conclusion, AGE-RAGE axis is involved in arterial stiffness and HTN. The studies suggest that inhibition of AGEs formation, reduction of AGE consumption, blockade of AGE-RAGE interaction, suppression of RAGE expression, and exogenous administration of sRAGE may be novel therapeutic strategies for treatment of arterial stiffness and HTN.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Manish Mishra
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
4
|
Nenna A, Nappi F, Avtaar Singh SS, Sutherland FW, Di Domenico F, Chello M, Spadaccio C. Pharmacologic Approaches Against Advanced Glycation End Products (AGEs) in Diabetic Cardiovascular Disease. Res Cardiovasc Med 2015; 4:e26949. [PMID: 26393232 PMCID: PMC4571620 DOI: 10.5812/cardiovascmed.4(2)2015.26949] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
CONTEXT Advanced Glycation End-Products (AGEs) are signaling proteins associated to several vascular and neurological complications in diabetic and non-diabetic patients. AGEs proved to be a marker of negative outcome in both diabetes management and surgical procedures in these patients. The reported role of AGEs prompted the development of pharmacological inhibitors of their effects, giving rise to a number of both preclinical and clinical studies. Clinical trials with anti-AGEs drugs have been gradually developed and this review aimed to summarize most relevant reports. EVIDENCE ACQUISITION Evidence acquisition process was performed using PubMed and ClinicalTrials.gov with manually checked articles. RESULTS Pharmacological approaches in humans include aminoguanidine, pyridoxamine, benfotiamine, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statin, ALT-711 (alagebrium) and thiazolidinediones. The most recent promising anti-AGEs agents are statins, alagebrium and thiazolidinediones. The role of AGEs in disease and new compounds interfering with their effects are currently under investigation in preclinical settings and these newer anti-AGEs drugs would undergo clinical evaluation in the next years. Compounds with anti-AGEs activity but still not available for clinical scenarios are ALT-946, OPB-9195, tenilsetam, LR-90, TM2002, sRAGE and PEDF. CONCLUSIONS Despite most studies confirm the efficacy of these pharmacological approaches, other reports produced conflicting evidences; in almost any case, these drugs were well tolerated. At present, AGEs measurement has still not taken a precise role in clinical practice, but its relevance as a marker of disease has been widely shown; therefore, it is important for clinicians to understand the value of new cardiovascular risk factors. Findings from the current and future clinical trials may help in determining the role of AGEs and the benefits of anti-AGEs treatment in cardiovascular disease.
Collapse
Affiliation(s)
- Antonio Nenna
- Department of Cardiovascular Sciences, Rome University of Campus Bio Medico, Rome, Italy
| | - Francesco Nappi
- Cardiac Surgery Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | | | - Fraser W. Sutherland
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
| | - Fabio Di Domenico
- Department of Biochemical Sciences, La Sapienza University of Rome, Rome, Italy
| | - Massimo Chello
- Department of Cardiovascular Sciences, Rome University of Campus Bio Medico, Rome, Italy
| | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
| |
Collapse
|
5
|
Serum amyloid A and inflammation in diabetic kidney disease and podocytes. J Transl Med 2015; 95:250-62. [PMID: 25531567 PMCID: PMC4346621 DOI: 10.1038/labinvest.2014.163] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022] Open
Abstract
Inflammatory pathways are central mechanisms in diabetic kidney disease (DKD). Serum amyloid A (SAA) is increased by chronic inflammation, but SAA has not been previously evaluated as a potential DKD mediator. The aims of this study were to determine whether SAA is increased in human DKD and corresponding mouse models and to assess effects of SAA on podocyte inflammatory responses. SAA was increased in the plasma of people with DKD characterized by overt proteinuria and inversely correlated with estimated glomerular filtration rate (creatinine-based CKD-EPI). SAA was also elevated in plasma of diabetic mouse models including type 1 diabetes (streptozotocin/C57BL/6) and type 2 diabetes (BTBR-ob/ob). SAA mRNA (Nephromine) was increased in human DKD compared with non-diabetic and/or glomerular disease controls (glomerular fold change 1.5, P=0.017; tubulointerstitium fold change 1.4, P=0.021). The kidneys of both diabetic mouse models also demonstrated increased SAA mRNA (quantitative real-time PCR) expression compared with non-diabetic controls (type 1 diabetes fold change 2.9; type 2 diabetes fold change 42.5, P=0.009; interaction by model P=0.57). Humans with DKD and the diabetic mouse models exhibited extensive SAA protein deposition in the glomeruli and tubulointerstitium in similar patterns by immunohistochemistry. SAA localized within podocytes of diabetic mice. Podocytes exposed to advanced glycation end products, metabolic mediators of inflammation in diabetes, increased expression of SAA mRNA (fold change 15.3, P=0.004) and protein (fold change 38.4, P=0.014). Podocytes exposed to exogenous SAA increased NF-κB activity, and pathway array analysis revealed upregulation of mRNA for NF-κB-dependent targets comprising numerous inflammatory mediators, including SAA itself (fold change 17.0, P=0.006). Inhibition of NF-κB reduced these pro-inflammatory responses. In conclusion, SAA is increased in the blood and produced in the kidneys of people with DKD and corresponding diabetic mouse models. Podocytes are likely to be key responder cells to SAA-induced inflammation in the diabetic kidney. SAA is a compelling candidate for DKD therapeutic and biomarker discovery.
Collapse
|
6
|
Afkarian M, Hirsch IB, Tuttle KR, Greenbaum C, Himmelfarb J, de Boer IH. Urinary excretion of RAS, BMP, and WNT pathway components in diabetic kidney disease. Physiol Rep 2014; 2:e12010. [PMID: 24793984 PMCID: PMC4098738 DOI: 10.14814/phy2.12010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The renin–angiotensin system (RAS), bone morphogenetic protein (BMP), and WNT pathways are involved in pathogenesis of diabetic kidney disease (DKD). This study characterized assays for urinary angiotensinogen (AGT), gremlin‐1, and matrix metalloproteinase 7 (MMP‐7), components of the RAS, BMP, and WNT pathways and examined their excretion in DKD. We measured urine AGT, gremlin‐1, and MMP‐7 in individuals with type 1 diabetes and prevalent DKD (n = 20) or longstanding (n = 61) or new‐onset (n = 10) type 1 diabetes without DKD. These urine proteins were also quantified in type 2 DKD (n = 11) before and after treatment with candesartan. The utilized immunoassays had comparable inter‐ and intra‐assay and intraindividual variation to assays used for urine albumin. Median (IQR) urine AGT concentrations were 226.0 (82.1, 550.3) and 13.0 (7.8, 20.0) μg/g creatinine in type 1 diabetes with and without DKD, respectively (P < 0.001). Median (IQR) urine gremlin‐1 concentrations were 48.6 (14.2, 254.1) and 3.6 (1.7, 5.5) μg/g, respectively (P < 0.001). Median (IQR) urine MMP‐7 concentrations were 6.0 (3.8, 10.5) and 1.0 (0.4, 2.9) μg/g creatinine, respectively (P < 0.001). Treatment with candesartan was associated with a reduction in median (IQR) urine AGT/creatinine from 23.5 (1.6, 105.1) to 2.0 (1.4, 13.7) μg/g, which did not reach statistical significance. Urine gremlin‐1 and MMP‐7 excretion did not decrease with candesartan. In conclusion, DKD is characterized by markedly elevated urine AGT, MMP‐7, and gremlin‐1. AGT decreased in response to RAS inhibition, suggesting that this marker reflects therapeutic response. Urinary components of the RAS, BMP, and WNT pathways may identify risk of DKD and aid development of novel therapeutics. Urine angiotensinogen, matrix metalloproteinase‐7, and gremlin‐1 concentrations are markedly elevated in people with type 1 diabetes and kidney disease, compared with those with recently diagnosed type 1 diabetes or longstanding type 1 diabetes without kidney disease. Treatment with an inhibitor of the renin–angiotensin system tended to reduce urine angiotensinogen concentration, but not urine matrix metalloproteinase‐7 or gremlin‐1.
Collapse
Affiliation(s)
- Maryam Afkarian
- Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | | | | | | | | | | |
Collapse
|
7
|
Engelen L, Stehouwer CDA, Schalkwijk CG. Current therapeutic interventions in the glycation pathway: evidence from clinical studies. Diabetes Obes Metab 2013; 15:677-89. [PMID: 23279611 DOI: 10.1111/dom.12058] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/20/2012] [Accepted: 12/05/2012] [Indexed: 02/06/2023]
Abstract
The increased formation of advanced glycation endproducts (AGEs) constitutes a potential mechanism of hyperglycaemia-induced micro- and macrovascular disease in diabetes. In vitro and animal experiments have shown that various interventions can inhibit formation and/or actions of AGEs, in particular the specific AGE inhibitor aminoguanidine and the AGEs crosslink breaker alagebrium, and the B vitamins pyridoxamine and thiamine, and the latter's synthetic derivative, benfotiamine. The potential clinical value of these interventions, however, remains to be established. The present review provides, from the clinical point of view, an overview of current evidence on interventions in the glycation pathway relating to (i) the clinical benefits of specific AGE inhibitors and AGE breakers and (ii) the potential AGE-inhibiting effects of therapies developed for purposes unrelated to the glycation pathway. We found that safety and/or efficacy in clinical studies with the specific AGE inhibitor, aminoguanidine and the AGE breaker, alagebrium, appeared to be a concern. The clinical evidence on the potential AGE-inhibiting effects of B vitamins is still limited. Finally, current evidence for AGE inhibition by therapies developed for purposes unrelated to glycation is limited due to a large heterogeneity in study designs and/or measurement techniques, which have often been sub-optimal. We conclude that, clinical evidence on interventions to inhibit formation and/or action of AGEs is currently weak and unconvincing.
Collapse
Affiliation(s)
- L Engelen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | |
Collapse
|
8
|
Meek RL, LeBoeuf RC, Saha SA, Alpers CE, Hudkins KL, Cooney SK, Anderberg RJ, Tuttle KR. Glomerular cell death and inflammation with high-protein diet and diabetes. Nephrol Dial Transplant 2013; 28:1711-20. [PMID: 23314315 DOI: 10.1093/ndt/gfs579] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Overfeeding amino acids (AAs) increases cellular exposure to advanced glycation end-products (AGEs), a mechanism for protein intake to worsen diabetic kidney disease (DKD). This study assessed receptor for AGE (RAGE)-mediated apoptosis and inflammation in glomerular cells exposed to metabolic stressors characteristic of high-protein diets and/or diabetes in vitro with proof-of-concept appraisal in vivo. METHODS Mouse podocytes and mesangial cells were cultured under control and metabolic stressor conditions: (i) no addition; (ii) increased AAs (4-6-fold>control); (iii) high glucose (HG, 30.5 mM); (iv) AA/HG combination; (v) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL); (vi) BSA (300 µg/mL). RAGE was inhibited by blocking antibody. Diabetic (streptozotocin) and nondiabetic mice (C57BL/6J) consumed diets with protein calories of 20 or 40% (high) for 20 weeks. People with DKD and controls provided 24-h urine samples. RESULTS In podocytes and mesangial cells, apoptosis (caspase 3/7 activity and TUNEL) increased in all metabolic stressor conditions. Both inflammatory mediator expression (real-time reverse transcriptase-polymerase chain reaction: serum amyloid A, caspase-4, inducible nitric oxide synthase, and monocyte chemotactic protein-1) and RAGE (immunostaining) also increased. RAGE inhibition prevented apoptosis and inflammation in podocytes. Among mice fed high protein, podocyte number (WT-1 immunostaining) decreased in the diabetic group, and only these diabetic mice developed albuminuria. Protein intake (urea nitrogen) correlated with AGE excretion (carboxymethyllysine) in people with DKD and controls. CONCLUSIONS High-protein diet and/or diabetes-like conditions increased glomerular cell death and inflammation, responses mediated by RAGEs in podocytes. The concept that high-protein diets exacerbate early indicators of DKD is supported by data from mice and people.
Collapse
Affiliation(s)
- Rick L Meek
- Providence Medical Research Center, Providence Sacred Heart Medical Center, Spokane, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Raposeiras-Roubín S, Rodiño-Janeiro BK, Grigorian-Shamagian L, Moure-González M, Seoane-Blanco A, Varela-Román A, Álvarez E, González-Juanatey JR. Productos de glicación avanzada: nuevo marcador de disfunción renal en pacientes con insuficiencia cardíaca crónica. Med Clin (Barc) 2011; 136:513-21. [DOI: 10.1016/j.medcli.2010.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022]
|
10
|
Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2:1247-65. [PMID: 22254007 PMCID: PMC3257625 DOI: 10.3390/nu2121247] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.
Collapse
Affiliation(s)
- Claudia Luevano-Contreras
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|