1
|
Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response. Int J Mol Sci 2021; 22:ijms222111374. [PMID: 34768805 PMCID: PMC8584063 DOI: 10.3390/ijms222111374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
Hypertension is accompanied by the over-activation of macrophages. Diuretics administered alone or in combination with hypotensive drugs may have immunomodulatory effects. Thus, the influence of tested drugs on mouse macrophage-mediated humoral immunity was investigated. Mice were treated intraperitoneally with captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) by 8 days. Mineral oil-induced peritoneal macrophages were harvested to assess the generation of cytokines in ELISA, and the expression of surface markers was analyzed cytometrically. Macrophages were also pulsed with sheep red blood cells (SRBC) and transferred to naive mice for evaluation of their ability to induce a humoral immune response. Tested drugs increase the expression of surface markers important for the antigen phagocytosis and presentation. SRBC-pulsed macrophages from mice treated with captopril combined with diuretics increased the secretion of antigen-specific antibodies by recipient B cells, while macrophages of mice treated with hydrochlorothiazide or furosemide with captopril increased the number of antigen-specific B cells. Tested drugs alter the macrophage secretory profile in favor of anti-inflammatory cytokines. Our results showed that diuretics with or without captopril modulate the humoral response by affecting the function of macrophages, which has significant translational potential in assessing the safety of antihypertensive therapy.
Collapse
|
2
|
Muñoz N, Pedreañez A, Mosquera J. Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Can J Diabetes 2020; 44:651-656. [PMID: 32654973 DOI: 10.1016/j.jcjd.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES It is known that the receptor for advanced glycation end products (RAGE) activation is involved in the pathogenesis of cardiovascular disease in diabetes. Previous studies have shown the presence of angiotensin II (Ang II) in diabetes, suggesting a role for this hormone during the disease. However, the association between RAGE and Ang II during pathologic cardiac remodelling after streptozotocin (STZ)-induced diabetes remains unclear. Because Ang II is capable of inducing pro-inflammatory events, blocking its production (enalapril), and its action on its receptor (losartan) could decrease inflammatory events in the myocardium in this experimental model of diabetes. Thus, the aim of this study was to assess the association between RAGE expression, inflammatory events and Ang II in the myocardium during STZ-induced diabetes. METHODS Diabetes was induced by intravenous injection of STZ in Sprague-Dawley rats. Myocardial expressions of RAGE, monocyte/macrophage (ED-1-positive cells) infiltration and the intercellular adhesion molecule-1 were determined by histochemical methods. Levels of circulating endothelin-1 (ET-1) were determined by enzyme-linked immunoassay. Effects of Ang II included blocking using losartan (15 mg/kg body weight per day by gastric gavage) or enalapril (18 mg/kg body weight per day by gastric gavage). RESULTS Increased expression of both RAGE and ED-1 was seen in the myocardium, but expression of myocardial vascular intercellular adhesion molecule-1 remained unchanged. Circulating levels of ET-1 in STZ rats were increased. Renin‒angiotensin system inhibition decreased expression of myocardial RAGE, ED-1 and ET-1. CONCLUSIONS The present findings suggest a role for Ang II in myocardial inflammation in STZ-induced diabetes mediated by RAGE and ET-1.
Collapse
Affiliation(s)
- Nelson Muñoz
- Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Carrera de Medicina, Riobamba, Ecuador
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
3
|
Knafl GJ, Moser DK, Wu JR, Riegel B. Discontinuation of angiotensin-converting enzyme inhibitors or beta-blockers and the impact on heart failure hospitalization rates. Eur J Cardiovasc Nurs 2019; 18:667-678. [PMID: 31244325 DOI: 10.1177/1474515119860321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adherence to evidence-based therapy is essential for optimal management of heart failure. Yet, medication adherence is poor in heart failure patients. The Ascertaining Barriers to Compliance Project decomposed the medication adherence process into initiation, implementation, and discontinuation stages, but electronic monitoring-based adherence analyses usually do not consider this process. AIMS The aim of this study was to describe individual-patient patterns of medication adherence from electronic monitoring data among adults with chronic heart failure, adherence types, and risk factors for increased all-cause hospitalization including measures of poor adherence such as discontinuation. METHODS Data from two prospective studies of adherence measured with electronic monitoring for heart failure patients were combined and restricted to monitoring of angiotensin-converting enzyme inhibitors and beta-blockers over an initial three-month period. Hospitalizations were recorded for this period as well as for a three-month follow-up period. Analyses were conducted using adaptive modeling methods to identify individual-patient adherence patterns, adherence types, and risk factors for an increased hospitalization rate. RESULTS Using electronic monitoring data for 254 heart failure patients, four adherence types were identified: highly consistent, consistent but variable, moderately consistent, and poorly consistent. Sixteen individually significant risk factors for increased hospitalization rates were identified and used to generate a multiple risk factors model. Medication discontinuation was the most important individual risk factor and most important in the multiple risk factors model. CONCLUSION Discontinuation of angiotensin-converting enzyme inhibitors or beta-blockers increases hospitalization rates for heart failure patients. Interventions that effectively address this problem are urgently needed.
Collapse
Affiliation(s)
- George J Knafl
- School of Nursing, University of North Carolina at Chapel Hill, NC, USA
| | - Debra K Moser
- College of Nursing, University of Kentucky, Lexington, KY, USA
| | - Jia-Rong Wu
- School of Nursing, University of North Carolina at Chapel Hill, NC, USA
| | - Barbara Riegel
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Potential Role of Carvedilol in the Cardiac Immune Response Induced by Experimental Infection with Trypanosoma cruzi. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9205062. [PMID: 28377930 PMCID: PMC5362721 DOI: 10.1155/2017/9205062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/06/2017] [Accepted: 02/19/2017] [Indexed: 12/16/2022]
Abstract
Trypanosoma cruzi causes a cardiac infection characterized by an inflammatory imbalance that could become the inciting factor of the illness. To this end, we evaluated the role of carvedilol, a beta-blocker with potential immunomodulatory properties, on the immune response in C57BL/6 mice infected with VL-10 strain of T. cruzi in the acute phase. Animals (n = 40) were grouped: (i) not infected, (ii) infected, (iii) infected + carvedilol, and (iv) not infected + carvedilol. We analyzed parameters related to parasitemia, plasma levels of TNF, IL-10, and CCL2, and cardiac histopathology after the administration of carvedilol for 30 days. We did not observe differences in the maximum peaks of parasitemia in the day of their detection among the groups. The plasma TNF was elevated at 60 days of infection in mice treated or not with carvedilol. However, we observed a decreased CCL2 level and increased IL-10 levels in those infected animals treated with carvedilol, which impacted the reduction of the inflammatory infiltration in cardiac tissue. For this experimental model, carvedilol therapy was not able to alter the levels of circulating parasites but modulates the pattern of CCL2 and IL-10 mediators when the VL10 strain of T. cruzi was used in C57BL6 mice.
Collapse
|
5
|
Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K. Cardiac Cachexia: Perspectives for Prevention and Treatment. Arq Bras Cardiol 2016; 108:74-80. [PMID: 27812676 PMCID: PMC5245851 DOI: 10.5935/abc.20160142] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Cachexia is a prevalent pathological condition associated with chronic heart failure. Its occurrence predicts increased morbidity and mortality independent of important clinical variables such as age, ventricular function, or heart failure functional class. The clinical consequences of cachexia are dependent on both weight loss and systemic inflammation, which accompany cachexia development. Skeletal muscle wasting is an important component of cachexia; it often precedes cachexia development and predicts poor outcome in heart failure. Cachexia clinically affects several organs and systems. It is a multifactorial condition where underlying pathophysiological mechanisms are not completely understood making it difficult to develop specific prevention and treatment therapies. Preventive strategies have largely focused on muscle mass preservation. Different treatment options have been described, mostly in small clinical studies or experimental settings. These include nutritional support, neurohormonal blockade, reducing intestinal bacterial translocation, anemia and iron deficiency treatment, appetite stimulants, immunomodulatory agents, anabolic hormones, and physical exercise regimens. Currently, nonpharmacological therapy such as nutritional support and physical exercise are considered central to cachexia prevention and treatment.
Collapse
Affiliation(s)
- Marina Politi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Rafael Verardino Capalbo
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Fernando G Romeiro
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Katashi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Chu LH, Annex BH, Popel AS. Computational drug repositioning for peripheral arterial disease: prediction of anti-inflammatory and pro-angiogenic therapeutics. Front Pharmacol 2015; 6:179. [PMID: 26379552 PMCID: PMC4548203 DOI: 10.3389/fphar.2015.00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Peripheral arterial disease (PAD) results from atherosclerosis that leads to blocked arteries and reduced blood flow, most commonly in the arteries of the legs. PAD clinical trials to induce angiogenesis to improve blood flow conducted in the last decade have not succeeded. We have recently constructed PADPIN, protein-protein interaction network (PIN) of PAD, and here we combine it with the drug-target relations to identify potential drug targets for PAD. Specifically, the proteins in the PADPIN were classified as belonging to the angiome, immunome, and arteriome, characterizing the processes of angiogenesis, immune response/inflammation, and arteriogenesis, respectively. Using the network-based approach we predict the candidate drugs for repositioning that have potential applications to PAD. By compiling the drug information in two drug databases DrugBank and PharmGKB, we predict FDA-approved drugs whose targets are the proteins annotated as anti-angiogenic and pro-inflammatory, respectively. Examples of pro-angiogenic drugs are carvedilol and urokinase. Examples of anti-inflammatory drugs are ACE inhibitors and maraviroc. This is the first computational drug repositioning study for PAD.
Collapse
Affiliation(s)
- Liang-Hui Chu
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Brian H Annex
- Division of Cardiovascular Medicine, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
7
|
Kim TT, Dyck JRB. Is AMPK the savior of the failing heart? Trends Endocrinol Metab 2015; 26:40-8. [PMID: 25439672 DOI: 10.1016/j.tem.2014.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) is one of the leading causes of death, affecting more than 20 million people worldwide. A vast array of pathophysiological and molecular events contributes to the development and eventual worsening of HF. Of these, defects in myocardial metabolic processes that normally result in proper ATP production necessary to maintain contractile function appear to be a major contributor to HF pathogenesis. A key player involved in regulating myocardial metabolism is AMP-activated protein kinase (AMPK), a major regulatory kinase controlling numerous metabolic pathways. Here, we review the metabolic changes that occur in HF, what role alterations in energy metabolism has in its progression, and the involvement of AMPK in this context.
Collapse
Affiliation(s)
- Ty T Kim
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, 458 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, 458 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
8
|
Andersson P, Bratt J, Heimbürger M, Cederholm T, Palmblad J. Inhibition of Neutrophil-Dependent Cytotoxicity for Human Endothelial Cells by ACE Inhibitors. Scand J Immunol 2014; 80:339-45. [DOI: 10.1111/sji.12218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 07/31/2014] [Indexed: 12/19/2022]
Affiliation(s)
- P. Andersson
- Department of Medicine; Stockholm Soder Hospital; Stockholm Sweden
| | - J. Bratt
- Department of Rheumatology; Karolinska University Hospital; Stockholm Sweden
| | - M. Heimbürger
- Department of Rheumatology; Karolinska University Hospital; Stockholm Sweden
| | - T. Cederholm
- Departments of Clinical Nutrition and Metabolism and of Geriatrics; Uppsala University; Uppsala Sweden
| | - J. Palmblad
- Department of Hematology; Karolinska University Hospital; Center for Inflammation and Hematology Research; Stockholm Sweden
- Department of Medicine; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
9
|
Nejm MB, Gouveia TL, da Graça Naffah-Mazacoratti M, Scorza CA, Cavalheiro EA, Scorza FA. Lovastatin and sudden unexpected death in epilepsy: a matter for debate. Epilepsy Behav 2013; 28:10-1. [PMID: 23648273 DOI: 10.1016/j.yebeh.2013.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/16/2022]
|
10
|
Colombo PC, Ganda A, Lin J, Onat D, Harxhi A, Iyasere JE, Uriel N, Cotter G. Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail Rev 2013; 17:177-90. [PMID: 21688186 DOI: 10.1007/s10741-011-9261-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although inflammation is a physiologic response designed to protect us from infection, when unchecked and ongoing it may cause substantial harm. Both chronic heart failure (CHF) and chronic kidney disease (CKD) are known to cause elaboration of several pro-inflammatory mediators that can be detected at high concentrations in the tissues and blood stream. The biologic sources driving this chronic inflammatory state in CHF and CKD are not fully established. Traditional sources of inflammation include the heart and the kidneys which produce a wide range of pro-inflammatory cytokines in response to neurohormones and sympathetic activation. However, growing evidence suggests that non-traditional biomechanical mechanisms such as venous and tissue congestion due to volume overload are also important as they stimulate endotoxin absorption from the bowel and peripheral synthesis and release of pro-inflammatory mediators. Both during the chronic phase and, more rapidly, during acute exacerbations of CHF and CKD, inflammation and congestion appear to amplify each other resulting in a downward spiral of worsening cardiac, vascular, and renal functions that may negatively impact patients' outcome. Anti-inflammatory treatment strategies aimed at attenuating end organ damage and improving clinical prognosis in the cardiorenal syndrome have been disappointing to date. A new therapeutic paradigm may be needed, which involves different anti-inflammatory strategies for individual etiologies and stages of CHF and CKD. It may also include specific (short-term) anti-inflammatory treatments that counteract inflammation during the unsettled phases of clinical decompensation. Finally, it will require greater focus on volume overload as an increasingly significant source of systemic inflammation in the cardiorenal syndrome.
Collapse
Affiliation(s)
- Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Valentová M, von Haehling S, Doehner W, Murín J, Anker SD, Sandek A. Liver dysfunction and its nutritional implications in heart failure. Nutrition 2013; 29:370-8. [DOI: 10.1016/j.nut.2012.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 12/12/2022]
|
12
|
Calderon D, Planat-Benard V, Bellamy V, Vanneaux V, Kuhn C, Peyrard S, Larghero J, Desnos M, Casteilla L, Pucéat M, Menasché P, Chatenoud L. Immune response to human embryonic stem cell-derived cardiac progenitors and adipose-derived stromal cells. J Cell Mol Med 2012; 16:1544-52. [PMID: 21895965 PMCID: PMC3823222 DOI: 10.1111/j.1582-4934.2011.01435.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transplantation of allogeneic human embryonic stem cell-derived cardiac progenitors triggers an immune response. We assessed whether this response could be modulated by the concomitant use of adipose-derived stromal cells (ADSC). Peripheral blood mononuclear cells were collected from 40 patients with coronary artery disease (CAD) and nine healthy controls. Cardiac progenitors (CD15+ Mesp1+) were generated as already reported from the I6 cell line treated with bone morphogenetic protein (BMP)-2. Adipose-derived stromal cells were obtained from abdominal dermolipectomies. We assessed the proliferative response of peripheral lymphocytes from patients and controls to cardiac progenitors cultured on a monolayer of ADSC, to allogeneic lymphocytes in mixed lymphocyte culture and to the T cell mitogen phytohemaglutin A in presence or absence of ADSC. Cardiac progenitors cultured on a monolayer of ADSC triggered a proliferation of lymphocytes from both patients and controls albeit lower than that induced by allogeneic lymphocytes. When cultured alone, ADSC did not induce any proliferation of allogeneic lymphocytes. When added to cultures of lymphocytes, ADSC significantly inhibited the alloantigen or mitogen-induced proliferative response. Compared to healthy controls, lymphocytes from patients presenting CAD expressed a decreased proliferative capacity, in particular to mitogen-induced stimulation. Adipose-derived stromal cells express an immunomodulatory effect that limits both alloantigen and mitogen-induced lymphocyte responses. Furthermore, lymphocytes from patients with CAD are low responders to conventional stimuli, possibly because of their age and disease-associated treatment regimens. We propose that, in combination, these factors may limit the in vivo immunogenicity of cardiac progenitors co-implanted with ADSC in patients with CAD.
Collapse
Affiliation(s)
- Damelys Calderon
- INSERM UMR 633, Laboratory of Surgical Research, Höopital Européen Georges Pompidou, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen KC, Hsieh CL, Peng CC, Peng RY. Exercise rescued chronic kidney disease by attenuating cardiac hypertrophy through the cardiotrophin-1 -> LIFR/gp 130 -> JAK/STAT3 pathway. Eur J Prev Cardiol 2012; 21:507-20. [PMID: 23064267 DOI: 10.1177/2047487312462827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is usually associated with cardiac apoptosis and/or cardiac hypertrophy. We hypothesized that exercise can reduce the CKD-induced cardiac damage. METHODS AND RESULTS The doxorubicin-induced CKD (DRCKD) model was used in rats to compare two exercise models: 60-min running and 60-min swimming. Results indicated that in healthy normal groups, the signals cardiotrophin-1 (CT-1), interleukin 6 (IL-6), leukaemia inhibitory factor receptor (LIFR), and gp130 were upregulated and janus kinase (JAK) and signal transducer and activation of transcription (STAT) were downregulated by both exercises. In contrast, all signals were highly upregulated in CKD. After exercise training, all signals (CT-1, IL-6, LIFR, gp130, and STAT) were downregulated, with JAK being only slightly upregulated in the running group but not in the swimming group. The myocyte death pathway (CT-1/IL-6 → LIFR/gp130 → PI3K → Akt → Bad) was excluded due to no change found for Bad. Nitric oxide (NO; normal, 15.63 ± 0.86 µmol/l) was significantly suppressed in CKD rats (2.95 ± 0.32 µmol/l), and both running and swimming training highly upregulated the NO level to 30.33 ± 1.03 µmol/l and 27.82 ± 2.47 µmol/l in normal subjects and 24.0 ± 3.2 µmol/l and 22.69 ± 3.79 µmol/l in the DRCKD rats, respectively. The endothelial progenic cells CD34 were significantly suppressed in DRCKD rats, which were not rescued significantly by exercise. In contrast, the CD 34 cells were only slightly suppressed in the healthy subjects by exercise. CONCLUSION Both exercise regimens were beneficial by rescuing cardiac function in CKD victims. Its action mechanism was by way of inhibiting myocyte death and rescuing cardiac hypertrophy.
Collapse
|