1
|
Rahmouni K. Neural Circuits Underlying Reciprocal Cardiometabolic Crosstalk: 2023 Arthur C. Corcoran Memorial Lecture. Hypertension 2024; 81:1233-1243. [PMID: 38533662 PMCID: PMC11096079 DOI: 10.1161/hypertensionaha.124.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The interplay of various body systems, encompassing those that govern cardiovascular and metabolic functions, has evolved alongside the development of multicellular organisms. This evolutionary process is essential for the coordination and maintenance of homeostasis and overall health by facilitating the adaptation of the organism to internal and external cues. Disruption of these complex interactions contributes to the development and progression of pathologies that involve multiple organs. Obesity-associated cardiovascular risks, such as hypertension, highlight the significant influence that metabolic processes exert on the cardiovascular system. This cardiometabolic communication is reciprocal, as indicated by substantial evidence pointing to the ability of the cardiovascular system to affect metabolic processes, with pathophysiological implications in disease conditions. In this review, I outline the bidirectional nature of the cardiometabolic interaction, with special emphasis on the impact that metabolic organs have on the cardiovascular system. I also discuss the contribution of the neural circuits and autonomic nervous system in mediating the crosstalk between cardiovascular and metabolic functions in health and disease, along with the molecular mechanisms involved.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
2
|
Paes-Leme B, Monteiro LDRN, Gholami K, Hoe SZ, Ferguson AV, Murphy D, Antunes-Rodrigues J, Rorato R, Reis LC, Mecawi AS. Fasting increases circulating angiotensin levels and brain Agtr1a expression in male rats. J Neuroendocrinol 2023; 35:e13334. [PMID: 37667574 DOI: 10.1111/jne.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/06/2023]
Abstract
In addition to being recognised for involvement in cardiovascular control and hydromineral balance, the renin-angiotensin system (RAS) has also been associated with the neuroendocrine control of energy balance. One of the main brain sites for angiotensin II (ANG II)/type 1 receptor (AT1 R) signalling is the subfornical organ (SFO), a circumventricular organ related to the control of autonomic functions, motivated behaviours and energy metabolism. Thus, we hypothesised that circulating ANG II may act on the SFO AT1 R receptors to integrate metabolic and hydromineral balance. We evaluated whether food deprivation can modulate systemic RAS activity and Agrt1a brain expression, and if ANG II/AT1 R signalling influences the hypothalamic expression of mRNAs encoding neuropeptides and food and water ingestion in fed and fasted Wistar rats. We found a significant increase in both ANG I and ANG II plasma levels after 24 and 48 h of fasting. Expression of Agrt1a mRNA in the SFO and paraventricular nucleus (PVN) also increased after food deprivation for 48 h. Treatment of fasted rats with low doses of losartan in drinking water attenuated the decrease in glycemia and meal-associated water intake without changing the expression in PVN or arcuate nucleus of mRNAs encoding selected neuropeptides related to energy homeostasis control. These findings point to a possible role of peripheral ANG II/SFO-AT1 R signalling in the control of refeeding-induced thirst. On the other hand, intracerebroventricular losartan treatment decreased food and water intake over dark time in fed but not in fasted rats.
Collapse
Affiliation(s)
- Bruno Paes-Leme
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lívia da Rocha Natalino Monteiro
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Alastair Victor Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Luis Carlos Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Li Y, Zhai H, Kang L, Chu Q, Zhao X, Li R. Causal association between basal metabolic rate and risk of cardiovascular diseases: a univariable and multivariable Mendelian randomization study. Sci Rep 2023; 13:12487. [PMID: 37528130 PMCID: PMC10393961 DOI: 10.1038/s41598-023-39551-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Basal metabolic rate (BMR) is associated with cardiovascular health; however, the causal relationship between BMR and the risk of cardiovascular diseases (CVDs) remains unclear. This study aimed to investigate the potential causal relationship of BMR on common CVDs including aortic aneurysm (AA), atrial fibrillation and flutter (AFF), calcific aortic valvular stenosis (CAVS), heart failure (HF), and myocardial infarction (MI) by Mendelian randomization (MR). The univariable MR analysis using inverse variance weighted (IVW) model as the primary analysis method revealed that genetically predicted higher BMR causally increased the risk of AA [IVW odds ratio (OR) = 1.34, 95% confidence interval CI 1.09-1.65, p = 0.00527], AFF (IVW OR = 1.87, 95% CI 1.65-2.12, p = 1.697 × E-22), and HF (IVW OR = 1.35, 95% CI 1.20-1.51, p = 2.364 × E-07), while causally decreasing the risk of MI (IVW OR = 0.83, 95% CI 0.73-0.93, p = 0.00255). In the multivariable MR analysis, which controlled for common cardiovascular risk factors, direct effects of BMR on an increased risk of AA and AFF, as well as a decreased risk of MI, but an attenuated causal effect on HF, were observed. In conclusion, the current MR study provides evidence for a causal relationship between BMR and the risk of AA, AFF, HF, and MI.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiqi Zhai
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Kang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qingmin Chu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinjun Zhao
- Department of Cardiovascular Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ritter ML, Deng G, Reho JJ, Deng Y, Sapouckey SA, Opichka MA, Balapattabi K, Wackman KK, Brozoski DT, Lu KT, Paradee WJ, Gibson-Corley KN, Cui H, Nakagawa P, Morselli LL, Sigmund CD, Grobe JL. Cardiometabolic Consequences of Deleting the Regulator of G protein Signaling-2 ( Rgs2) From Cells Expressing Agouti-Related Peptide or the ANG (Angiotensin) II Type 1A Receptor in Mice. Hypertension 2022; 79:2843-2853. [PMID: 36259376 PMCID: PMC9649888 DOI: 10.1161/hypertensionaha.122.20169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND RGS (regulator of G protein signaling) family members catalyze the termination of G protein signaling cascades. Single nucleotide polymorphisms in the RGS2 gene in humans have been linked to hypertension, preeclampsia, and anxiety disorders. Mice deficient for Rgs2 (Rgs2Null) exhibit hypertension, anxiety, and altered adipose development and function. METHODS To study cell-specific functions of RGS2, a novel gene-targeted mouse harboring a conditional allele for the Rgs2 gene (Rgs2Flox) was developed. These mice were bred with mice expressing Cre-recombinase via the Agouti-related peptide locus (Agrp-Cre) to cause deletion of Rgs2 from all cells expressing Agrp (Rgs2Agrp-KO), or a novel transgenic mouse expressing Cre-recombinase via the ANG (angiotensin) type 1A receptor (Agtr1a/ AT1A) promoter encoded in a bacterial artificial chromosome (BAC-AT1A-Cre) to delete Rgs2 in all Agtr1a-expressing cells (Rgs2AT1A-KO). RESULTS Whereas Rgs2Flox, Rgs2Agrp-KO, and BAC-AT1A-Cre mice exhibited normal growth and survival, Rgs2AT1A-KO exhibited pre-weaning lethality. Relative to littermates, Rgs2Agrp-KO exhibited reduced fat gains when maintained on a high fat diet, associated with increased energy expenditure. Similarly, surviving adult Rgs2AT1A-KO mice also exhibited increased energy expenditure. Surprisingly, given the hypertensive phenotype previously reported for Rgs2Null mice and evidence supporting a role for RGS2 in terminating AT1A signaling in various cell types, Rgs2AT1A-KO mice exhibited normal blood pressure, ingestive behaviors, and renal functions, both before and after chronic infusion of ANG (490 ng/kg/min, sc). CONCLUSIONS These results demonstrate the development of a novel mouse with conditional expression of Rgs2 and illustrate the role of Rgs2 within selected cell types for cardiometabolic control.
Collapse
Affiliation(s)
- McKenzie L. Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Guorui Deng
- Department of Pharmacology & Neuroscience, University of Iowa, Iowa City, IA 52242
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yue Deng
- Department of Pharmacology & Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Sarah A. Sapouckey
- Department of Pharmacology & Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Daniel T. Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | | | - Huxing Cui
- Department of Pharmacology & Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lisa L. Morselli
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Pedrianes-Martin PB, Martin-Rincon M, Morales-Alamo D, Perez-Suarez I, Perez-Valera M, Galvan-Alvarez V, Curtelin D, de Pablos-Velasco P, Calbet JAL. Treatment of hypertension with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and resting metabolic rate: A cross-sectional study. J Clin Hypertens (Greenwich) 2021; 23:2106-2114. [PMID: 34846787 PMCID: PMC8696230 DOI: 10.1111/jch.14392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022]
Abstract
Hypertension in obese and overweight patients is associated with an elevated resting metabolic rate (RMR). The aim of this study was to determine whether RMR is reduced in hypertensive patients treated with angiotensin‐converting enzyme inhibitors (ACEI) and blockers (ARB). The RMR was determined by indirect calorimetry in 174 volunteers; 93 (46.5 %) were hypertensive, of which 16 men and 13 women were treated with ACEI/ARB, while 30 men and 19 women with untreated hypertension served as a control group. Treated and untreated hypertensives had similar age, BMI, physical activity, and cardiorespiratory fitness. The RMR normalized to the lean body mass (LBM) was 15% higher in the untreated than ACEI/ARB‐treated hypertensive women (p = .003). After accounting for LBM, whole‐body fat mass, age, the double product (heart rate x systolic blood pressure), and the distance walked per day, the RMR was 2.9% lower in the patients taking ACEI/ARB (p = .26, treatment x sex interaction p = .005). LBM, age, and the double product explained 78% of the variability in RMR (R2 = 0.78, p < .001). In contrast, fat mass, the distance walked per day, and total T4 or TSH did not add predictive power to the model. Compared to men, a greater RMR per kg of LBM was observed in untreated hypertensive overweight and obese women, while this sex difference was not observed in patients treated with ACEI or ARBs. In conclusion, our results indicate that elevated RMR per kg of LBM may be normalized by antagonizing the renin‐angiotensin system.
Collapse
Affiliation(s)
- Pablo B Pedrianes-Martin
- Department of Endocrinology and Nutrition, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marcos Martin-Rincon
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ismael Perez-Suarez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Mario Perez-Valera
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Curtelin
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Pedro de Pablos-Velasco
- Department of Endocrinology and Nutrition, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
6
|
Su H, Liu N, Zhang Y, Kong J. Vitamin D/VDR regulates peripheral energy homeostasis via central renin-angiotensin system. J Adv Res 2021; 33:69-80. [PMID: 34603779 PMCID: PMC8463910 DOI: 10.1016/j.jare.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Some epidemiological studies have revealed that vitamin D (VD) deficiency is closely linked with the prevalence of obesity, however, the role of VD in energy homeostasis is yet to be investigated, especially in central nervous system. Given that VD negatively regulates renin in adipose tissue, we hypothesized that central VD might play a potential role in energy homeostasis. Objectives The present study aims to investigate the potential role of VD in energy homeostasis in the CNS and elaborate its underlying mechanisms. Methods This study was conducted in Cyp27b1−/− mice, VD-treated and wild-type mice. After the intraventricular injection of renin or its inhibitors, the changes of renin-angiotensin system (RAS) and its down-stream pathway as well as their effects on metabolic rate were examined. Results The RAS activity was enhanced in Cyp27b1−/− mice, exhibiting a increased metabolic rate. Additionally, corticotropin-releasing hormone (CRH), a RAS-mediated protein regulating energy metabolism in the hypothalamus, increased significantly in Cyp27b1−/− mice. While in VD-treated group, the RAS and sympathetic nerve activities were slightly inhibited, hence the reduced metabolic rate. Conclusion Collectively, the present study demonstrates that the VD/vitamin D receptor (VDR) has a significant impact on energy homeostasis through the modulation of RAS activity in the hypothalamus, subsequently altering CRH expression and sympathetic nervous activity.
Collapse
Affiliation(s)
- Han Su
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yalin Zhang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Mehay D, Silberman Y, Arnold AC. The Arcuate Nucleus of the Hypothalamus and Metabolic Regulation: An Emerging Role for Renin-Angiotensin Pathways. Int J Mol Sci 2021; 22:7050. [PMID: 34208939 PMCID: PMC8268643 DOI: 10.3390/ijms22137050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Obesity is a chronic state of energy imbalance that represents a major public health problem and greatly increases the risk for developing hypertension, hyperglycemia, and a multitude of related pathologies that encompass the metabolic syndrome. The underlying mechanisms and optimal treatment strategies for obesity, however, are still not fully understood. The control of energy balance involves the actions of circulating hormones on a widely distributed network of brain regions involved in the regulation of food intake and energy expenditure, including the arcuate nucleus of the hypothalamus. While obesity is known to disrupt neurocircuits controlling energy balance, including those in the hypothalamic arcuate nucleus, the pharmacological targeting of these central mechanisms often produces adverse cardiovascular and other off-target effects. This highlights the critical need to identify new anti-obesity drugs that can activate central neurocircuits to induce weight loss without negatively impacting blood pressure control. The renin-angiotensin system may provide this ideal target, as recent studies show this hormonal system can engage neurocircuits originating in the arcuate nucleus to improve energy balance without elevating blood pressure in animal models. This review will summarize the current knowledge of renin-angiotensin system actions within the arcuate nucleus for control of energy balance, with a focus on emerging roles for angiotensin II, prorenin, and angiotensin-(1-7) pathways.
Collapse
Affiliation(s)
| | | | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.M.); (Y.S.)
| |
Collapse
|
8
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
9
|
Hypothalamic Renin-Angiotensin System and Lipid Metabolism: Effects of Virgin Olive Oil versus Butter in the Diet. Nutrients 2021; 13:nu13020480. [PMID: 33572630 PMCID: PMC7912484 DOI: 10.3390/nu13020480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has been recently involved in the homeostatic regulation of energy. Our goal was to analyse the influence of a diet rich in saturated fatty acids (butter) against one enriched in monounsaturated fatty acids (olive oil) on hypothalamic RAS, and their relationship with the metabolism of fatty acids. Increases in body weight and visceral fat, together with an increase in aminopeptidase A expression and reductions in AngII and AngIV were observed in the hypothalamus of animals fed with the butter diet. In this group, a marked reduction in the expression of genes related to lipid metabolism (LPL, CD36, and CPT-1) was observed in liver and muscle. No changes were found in terms of body weight, total visceral fat and the expression of hepatic genes related to fatty acid metabolism in the olive oil diet. The expressions of LPL and CD36 were reduced in the muscles, although the decrease was lower than in the butter diet. At the same time, the fasting levels of leptin were reduced, no changes were observed in the hypothalamic expression of aminopeptidase A and decreases were noted in the levels of AngII, AngIV and AngIII. These results support that the type of dietary fat is able to modify the hypothalamic profile of RAS and the body energy balance, related to changes in lipid metabolism.
Collapse
|
10
|
Zanaty M, Seara FAC, Nakagawa P, Deng G, Mathieu NM, Balapattabi K, Karnik SS, Grobe JL, Sigmund CD. β-Arrestin-Biased Agonist Targeting the Brain AT 1R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate-Salt Hypertension. Hypertension 2020; 77:420-431. [PMID: 33249862 DOI: 10.1161/hypertensionaha.120.15793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of central AT1Rs (angiotensin type 1 receptors) is required for the increased blood pressure, polydipsia, and salt intake in deoxycorticosterone acetate (DOCA)-salt hypertension. TRV120027 (TRV027) is an AT1R-biased agonist that selectively acts through β-arrestin. We hypothesized that intracerebroventricular administration of TRV027 would ameliorate the effects of DOCA-salt. In a neuronal cell line, TRV027 induced AT1aR internalization through dynamin and clathrin-mediated endocytosis. We next evaluated the effect of chronic intracerebroventricular infusion of TRV027 on fluid intake. We measured the relative intake of water versus various saline solutions using a 2-bottle choice paradigm in mice subjected to DOCA with a concomitant intracerebroventricular infusion of either vehicle, TRV027, or losartan. Sham mice received intracerebroventricular vehicle without DOCA. TRV027 potentiated DOCA-induced water intake in the presence or absence of saline. TRV027 and losartan both increased the aversion for saline-an effect particularly pronounced for highly aversive saline solutions. Intracerebroventricular Ang (angiotensin) II, but not TRV027, increased water and saline intake in the absence of DOCA. In a separate cohort, blood pressure responses to acute intracerebroventricular injection of vehicle, TRV, or losartan were measured by radiotelemetry in mice with established DOCA-salt hypertension. Central administration of intracerebroventricular TRV027 or losartan each caused a significant and similar reduction of blood pressure and heart rate. We conclude that administration of TRV027 a selective β-arrestin biased agonist directly into the brain increases aversion to saline and lowers blood pressure in a model of salt-sensitive hypertension. These data suggest that selective activation of AT1R β-arrestin pathways may be exploitable therapeutically.
Collapse
Affiliation(s)
- Mario Zanaty
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.).,Department of Neurosurgery (M.Z.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Fernando A C Seara
- Department of Pharmacology and Neuroscience (F.A.C.S., G.D.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Pablo Nakagawa
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Guorui Deng
- Department of Pharmacology and Neuroscience (F.A.C.S., G.D.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Natalia M Mathieu
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Kirthikaa Balapattabi
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Sadashiva S Karnik
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (S.S.K.)
| | - Justin L Grobe
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| |
Collapse
|
11
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
12
|
Xue B, Zhang Y, Johnson AK. Interactions of the Brain Renin-Angiotensin-System (RAS) and Inflammation in the Sensitization of Hypertension. Front Neurosci 2020; 14:650. [PMID: 32760236 PMCID: PMC7373760 DOI: 10.3389/fnins.2020.00650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mounting evidence indicates that the renin-angiotensin (RAS) and immune systems interact with one another in the central nervous system (CNS) and that they are importantly involved in the pathogenesis of hypertension. Components comprising the classic RAS were first identified in the periphery, and subsequently, similar factors were found to be generated de novo in many different organs including the brain. There is humoral-neural coupling between the systemic and brain RASs, which is important for controlling sympathetic tone and the release of endocrine factors that collectively determine blood pressure (BP). Similar to the interactions between the systemic and brain RASs is the communication between the peripheral and brain immune systems. Systemic inflammation activates the brain’s immune response. Importantly, the RAS and inflammatory factors act synergistically in brain regions involved in the regulation of BP. This review presents evidence of how such interactions between the brain RAS and central immune mechanisms contribute to the pathogenesis of hypertension. Emphasis focuses on the role of these interactions to induce neuroplastic changes in a central neural network resulting in hypertensive response sensitization (HTRS). Neuroplasticity and HTRS can be induced by challenges (stressors) presented earlier in life such as a low-dose of angiotensin II or high fat diet (HFD) feeding in adults. Similarly, the offspring of mothers with gestational hypertension or of mothers ingesting a HFD during pregnancy are reprogrammed and manifest HTRS when exposed to new stressors as adults. Consideration of the actions and interactions of the brain RAS and inflammatory mediators in the context of the induction and expression of HTRS will provide insights into the etiology of high BP that may lead to new strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Yuping Zhang
- Department of Pathophysiology, Hebei North University, Zhangjiakou, China
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States.,Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States.,Health and Human Physiology, The University of Iowa, Iowa City, IA, United States.,The François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Abstract
Purpose of Review Hypertension is related to impaired metabolic homeostasis and can be regarded as a metabolic disorder. This review presents possible mechanisms by which metabolic disorders increase blood pressure (BP) and discusses the importance of the gut as a novel modulator of BP. Recent Findings Obesity and high salt intake are major risk factors for hypertension. There is a hypothesis of “salt-induced obesity”; i.e., high salt intake may tie to obesity. Heightened sympathetic nervous system (SNS) activity, especially in the kidney and brain, increases BP in obese patients. Adipokines, including adiponectin and leptin, and renin-angiotensin-aldosterone system (RAAS) contribute to hypertension. Adiponectin induced by a high-salt diet may decrease sodium/glucose cotransporter (SGLT) 2 expression in the kidney, which results in reducing BP. High salt can change secretions of adipokines and RAAS-related components. Evidence has been accumulating linking the gastrointestinal tract to BP. Glucagon-like peptide-1 (GLP-1) and ghrelin decrease BP in both rodents and humans. The sweet taste receptor in enteroendocrine cells increases SGLT1 expression and stimulates sodium/glucose absorption. Roux-en-Y gastric bypass improves glycemic and BP control due to reducing the activity of SGLT1. Na/H exchanger isoform 3 (NHE3) increases BP by stimulating the intestinal absorption of sodium. Gastrin functions as an intestinal sodium taste sensor and inhibits NHE3 activity. Intestinal mineralocorticoid receptors also regulate sodium absorption and BP due to changing ENaC activity. Gastric sensing of sodium induces natriuresis, and gastric distension increases BP. Changes in the composition and function of gut microbiota contribute to hypertension. A high-salt/fat diet may disrupt the gut barrier, which results in systemic inflammation, insulin resistance, and increased BP. Gut microbiota regulates BP by secreting vasoactive hormones and short-chain fatty acids. BP-lowering effects of probiotics and antibiotics have been reported. Bariatric surgery improves metabolic disorders and hypertension due to increasing GLP-1 secretion, decreasing leptin secretion and SNS activity, and changing gut microbiome composition. Strategies targeting the gastrointestinal system may be therapeutic options for improving metabolic abnormalities and reducing BP in humans. Summary SNS, brain, adipocytes, RAAS, the kidney, the gastrointestinal tract, and microbiota play important roles in regulating BP. Most notably, the gut could be a novel target for treatment of hypertension as a metabolic disorder.
Collapse
|