1
|
Cai Y, Jiang S, Huang C, Shen A, Zhang X, Yang W, Xiao Y, Gao S, Du R, Zheng G, Yan T, Craig Wan C. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154747. [PMID: 36931095 DOI: 10.1016/j.phymed.2023.154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The conserved sirtuin protein sirtuin 3 (SIRT3) is a vital protective protein for cardiac hypertrophy. Inhibition of SIRT3 accelerated the development of heart hypertrophy. On the other hand, myocardial hypertrophy was prevented by overexpressing SIRT3. SIRT3 has been proposed as a potential therapeutic target for managing or averting heart hypertrophy. Baicalin, a flavonoid extracted from the Scutellaria baicalensis plant, has anti-cardiovascular properties, including protection against cardiac hypertrophy. However, the molecular mechanism of the anti-hypertrophic effect of baicalin is not well known. PURPOSE In this study, we aim to investigate the effect of baicalin on cardiac hypertrophy and explored its underlying molecular mechanisms. STUDY-DESIGN/METHODS Abdominal aortic constriction (AAC)-induced mouse cardiac hypertrophy and angiotensin II (Ang II)-induced cardiomyocyte hypertrophy models were established. After baicalin treatment, cardiac hypertrophy was monitored by detecting the expression of hypertrophic genes and cell surface area. Echocardiogram was performed to check the heart function in vivo. Moreover, the protein expression of the SIRT3-dependent pathway was detected by Western blotting. RESULTS In this work, we demonstrated that baicalin might suppress the cell surface area and the expression of the Ang II -induced myosin heavy chain β (β-MHC), brain natriuretic polypeptide (BNP), and atrial natriuretic factor (ANF). Additionally, it reduced the AAC rats' hypertrophic impact. We also found that baicalin prevents cardiac hypertrophy by regulating SIRT3/LKB1/AMPK signaling pathway. Moreover, we showed that baicalin upregulated the SIRT3 protein expression by inhibiting proteasome and by the activation of 20 S proteasome subunit beta type-5 (PSMB5). CONCLUSION These results offer the first proof that baicalin inhibits cardiac hypertrophy due to its effect on the SIRT3-dependent signaling pathway, indicating its potential for treating cardiac hypertrophy and heart failure. The present study provides a preliminary experimental basis for the clinical application of baicalin and baicalin-like compounds.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yichuan Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Rong Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Guan S, Xin Y, Ding Y, Zhang Q, Han W. Ginsenoside Rg1 Protects against Cardiac Remodeling in Heart Failure via SIRT1/PINK1/Parkin-Mediated Mitophagy. Chem Biodivers 2023; 20:e202200730. [PMID: 36639922 DOI: 10.1002/cbdv.202200730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Adverse cardiac remodeling may lead to the development and progression of heart failure, which is lack of effective clinical treatment. Ginsenoside Rg1 (GRg1), a primary ingredient of Panax ginseng, protects against diverse cardiovascular disease, but its effects on cardiac remodeling remain unclear. Thus, we investigated the protective effect and mechanism of GRg1 on cardiac remodeling after myocardial infarction. GRg1 significantly ameliorated cardiac remodeling in mice with left anterior descending coronary artery ligation, reflected by reduced left ventricular dilation and decreased cardiac fibrosis, accompanied by improved cardiac function. Mechanistically, GRg1 considerably increased mitophagosomes formation, ameliorated cardiac mitochondria damage, and enhanced SIRT1/PINK1/Parkin-mediated mitophagy during cardiac remodeling. Consistently, GRg1 increased cell viability and attenuated apoptosis and fibrotic responses in H2 O2 -treated H9c2 cells by promoting the SIRT1/PINK1/Parkin axis. Furthermore, SIRT1-specific inhibitor (EX527) or the use of small interfering RNA against Parkin abolished the protective effect of GRg1 in vitro. These findings reveal a novel mechanism of GRg1 alleviating cardiac remodeling via enhancing SIRT1/PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Sibin Guan
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuanfeng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yagang Ding
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingliu Zhang
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
3
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
4
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
5
|
Rahman MA, Akter S, Dorotea D, Mazumder A, Uddin MN, Hannan MA, Hossen MJ, Ahmed MS, Kim W, Kim B, Uddin MJ. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Front Pharmacol 2022; 13:925993. [PMID: 35910356 PMCID: PMC9334908 DOI: 10.3389/fphar.2022.925993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 01/04/2023] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become critical clinical, socioeconomic, and public health concerns worldwide. The kidney requires a lot of energy, and mitochondria act as the central organelle for the proper functioning of the kidney. Mitochondrial dysfunction has been associated with the pathogenesis of AKI and CKD. Natural products and their structural analogs have been sought as an alternative therapeutic strategy despite the challenges in drug discovery. Many studies have shown that small-molecule natural products can improve renal function and ameliorate kidney disease progression. This review summarizes the nephroprotective effects of small-molecule natural products, such as berberine, betulinic acid, celastrol, curcumin, salidroside, polydatin, and resveratrol. Treatment with small-molecule natural products was shown to attenuate renal oxidative stress and mitochondrial DNA (mtDNA) damage and restore mitochondrial biogenesis and dynamics in the kidneys against various injury stimuli. Therefore, small-molecule natural products should be recognized as multi-target therapeutics and promising drugs to prevent kidney diseases, particularly those with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | | | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | | | | | - Md. Abdul Hannan
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Muhammad Jahangir Hossen
- Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Md. Selim Ahmed
- Department of Medicine, Surgery and Obstetrics, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barisal, Bangladesh
| | - Woojin Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Bonglee Kim, ; Md Jamal Uddin,
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
- *Correspondence: Bonglee Kim, ; Md Jamal Uddin,
| |
Collapse
|