1
|
McIntyre CW. Update on Hemodialysis-Induced Multiorgan Ischemia: Brains and Beyond. J Am Soc Nephrol 2024; 35:653-664. [PMID: 38273436 PMCID: PMC11149050 DOI: 10.1681/asn.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Hemodialysis is a life-saving treatment for patients with kidney failure. However, patients requiring hemodialysis have a 10-20 times higher risk of cardiovascular morbidity and mortality than that of the general population. Patients encounter complications such as episodic intradialytic hypotension, abnormal perfusion to critical organs (heart, brain, liver, and kidney), and damage to vulnerable vascular beds. Recurrent conventional hemodialysis exposes patients to multiple episodes of circulatory stress, exacerbating and being aggravated by microvascular endothelial dysfunction. This promulgates progressive injury that leads to irreversible multiorgan injury and the well-documented higher incidence of cardiovascular disease and premature death. This review aims to examine the underlying pathophysiology of hemodialysis-related vascular injury and consider a range of therapeutic approaches to improving outcomes set within this evolved rubric..
Collapse
Affiliation(s)
- Christopher W McIntyre
- Lilibeth Caberto Kidney Clinical Research Unit, Lawson Health Research Institute, London, Ontario, Canada, and Departments of Medicine, Medical Biophysics and Pediatrics, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Canaud B, Davenport A, Leray-Moragues H, Morena-Carrere M, Cristol JP, Kooman J, Kotanko P. Digital Health Support: Current Status and Future Development for Enhancing Dialysis Patient Care and Empowering Patients. Toxins (Basel) 2024; 16:211. [PMID: 38787063 PMCID: PMC11125858 DOI: 10.3390/toxins16050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic kidney disease poses a growing global health concern, as an increasing number of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting various challenges including shortage of care givers and cost-related issues. In this narrative essay, we explore innovative strategies based on in-depth literature analysis that may help healthcare systems face these challenges, with a focus on digital health technologies (DHTs), to enhance removal and ensure better control of broader spectrum of uremic toxins, to optimize resources, improve care and outcomes, and empower patients. Therefore, alternative strategies, such as self-care dialysis, home-based dialysis with the support of teledialysis, need to be developed. Managing ESKD requires an improvement in patient management, emphasizing patient education, caregiver knowledge, and robust digital support systems. The solution involves leveraging DHTs to automate HD, implement automated algorithm-driven controlled HD, remotely monitor patients, provide health education, and enable caregivers with data-driven decision-making. These technologies, including artificial intelligence, aim to enhance care quality, reduce practice variations, and improve treatment outcomes whilst supporting personalized kidney replacement therapy. This narrative essay offers an update on currently available digital health technologies used in the management of HD patients and envisions future technologies that, through digital solutions, potentially empower patients and will more effectively support their HD treatments.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, Montpellier University, 9 Rue des Carmelites, 34090 Montpellier, France
- Fondation Charles Mion, AIDER-SANTE, 34000 Montpellier, France; (H.L.-M.)
- MTX Consulting International, 34090 Montpellier, France
| | - Andrew Davenport
- UCL Department of Renal Medicine, University College London, London WC1E 6BT, UK;
| | | | - Marion Morena-Carrere
- PhyMedExp, Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of Montpellier, University of Montpellier, 34000 Montpellier, France;
| | - Jean Paul Cristol
- Fondation Charles Mion, AIDER-SANTE, 34000 Montpellier, France; (H.L.-M.)
- PhyMedExp, Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of Montpellier, University of Montpellier, 34000 Montpellier, France;
| | - Jeroen Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Peter Kotanko
- Renal Research Institute, Icahn University, New York, NY 10065, USA;
| |
Collapse
|