1
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. Dev Cell 2024; 59:2912-2930.e7. [PMID: 39121855 DOI: 10.1016/j.devcel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540880. [PMID: 37293066 PMCID: PMC10245679 DOI: 10.1101/2023.05.16.540880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian kidneys maintain fluid homeostasis through the cellular activity of nephrons and the conjoined collecting system. Each epithelial network originates from distinct progenitor cell populations that reciprocally interact during development. To extend our understanding of human and mouse kidney development, we profiled chromatin organization (ATAC-seq) and gene expression (RNA-seq) in developing human and mouse kidneys. Data were analyzed at a species level and then integrated into a common, cross-species multimodal data set. Comparative analysis of cell types and developmental trajectories identified conserved and divergent features of chromatin organization and linked gene activity, revealing species- and cell-type specific regulatory programs. Identification of human-specific enhancer regions linked through GWAS studies to kidney disease highlights the potential of developmental modeling to provide clinical insight.
Collapse
|
3
|
Miguel V, Tituaña J, Herrero JI, Herrero L, Serra D, Cuevas P, Barbas C, Puyol DR, Márquez-Expósito L, Ruiz-Ortega M, Castillo C, Sheng X, Susztak K, Ruiz-Canela M, Salas-Salvadó J, González MAM, Ortega S, Ramos R, Lamas S. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Invest 2021; 131:e140695. [PMID: 33465052 PMCID: PMC7919728 DOI: 10.1172/jci140695] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) remains a major epidemiological, clinical, and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) present a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine whether gain of function in FAO (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1A (CPT1A) in TECs. Cpt1a-knockin (CPT1A-KI) mice subjected to 3 models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy [FAN], and adenine-induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted proinflammatory response, and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restored oxidative metabolism and mitochondrial number and enhanced bioenergetics, increasing palmitate oxidation and ATP levels, changes that were also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients showed decreased CPT1 levels and increased accumulation of short- and middle-chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO) (CSIC-UAM), Madrid, Spain
| | - J. Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Cuevas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, Spain
| | - Diego Rodríguez Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital “Príncipe de Asturias,” IRYCIS, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Laura Márquez-Expósito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory. Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory. Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Carolina Castillo
- University Hospital “Príncipe de Asturias”, Alcalá de Henares, Madrid, Spain
| | - Xin Sheng
- Division of Nephrology, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miguel Ruiz-Canela
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
| | - Miguel A. Martínez González
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sagrario Ortega
- Transgenics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO) (CSIC-UAM), Madrid, Spain
| |
Collapse
|
4
|
Su J, Satchell SC, Shah RN, Wertheim JA. Kidney decellularized extracellular matrix hydrogels: Rheological characterization and human glomerular endothelial cell response to encapsulation. J Biomed Mater Res A 2018; 106:2448-2462. [PMID: 29664217 PMCID: PMC6376869 DOI: 10.1002/jbm.a.36439] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023]
Abstract
Hydrogels, highly-hydrated crosslinked polymer networks, closely mimic the microenvironment of native extracellular matrix (ECM) and thus present as ideal platforms for three-dimensional cell culture. Hydrogels derived from tissue- and organ-specific decellularized ECM (dECM) may retain bioactive signaling cues from the native tissue or organ that could in turn modulate cell-material interactions and response. In this study, we demonstrate that porcine kidney dECM can be processed to form hydrogels suitable for cell culture and encapsulation studies. Scanning electron micrographs of hydrogels demonstrated a fibrous ultrastructure with interconnected pores, and rheological analysis revealed rapid gelation times with shear moduli dependent upon the protein concentration of the hydrogels. Conditionally-immortalized human glomerular endothelial cells (GEnCs) cultured on top of or encapsulated within hydrogels exhibited high cell viability and proliferation over a one-week culture period. However, gene expression analysis of GEnCs encapsulated within kidney dECM hydrogels revealed significantly lower expression of several relevant genes of interest compared to those encapsulated within hydrogels composed of only purified collagen I. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2448-2462, 2018.
Collapse
Affiliation(s)
- Jimmy Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simon C. Satchell
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Ramille N. Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason A. Wertheim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Gene based therapies for kidney regeneration. Eur J Pharmacol 2016; 790:99-108. [PMID: 27455903 DOI: 10.1016/j.ejphar.2016.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
|
6
|
Li X, Chuang PY, D'Agati VD, Dai Y, Yacoub R, Fu J, Xu J, Taku O, Premsrirut PK, Holzman LB, He JC. Nephrin Preserves Podocyte Viability and Glomerular Structure and Function in Adult Kidneys. J Am Soc Nephrol 2015; 26:2361-77. [PMID: 25644109 DOI: 10.1681/asn.2014040405] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/19/2014] [Indexed: 01/12/2023] Open
Abstract
Nephrin is required during kidney development for the maturation of podocytes and formation of the slit diaphragm junctional complex. Because nephrin expression is downregulated in acquired glomerular diseases, nephrin deficiency is considered a pathologic feature of glomerular injury. However, whether nephrin deficiency exacerbates glomerular injury in glomerular diseases has not been experimentally confirmed. Here, we generated mice with inducible RNA interference-mediated nephrin knockdown. Short-term nephrin knockdown (6 weeks), starting after the completion of kidney development at 5 weeks of age, did not affect glomerular structure or function. In contrast, mice with long-term nephrin knockdown (20 weeks) developed mild proteinuria, foot process effacement, filtration slit narrowing, mesangial hypercellularity and sclerosis, glomerular basement membrane thickening, subendothelial zone widening, and podocyte apoptosis. When subjected to an acquired glomerular insult induced by unilateral nephrectomy or doxorubicin, mice with short-term nephrin knockdown developed more severe glomerular injury compared with mice without nephrin knockdown. Additionally, nephrin-knockdown mice developed more exaggerated glomerular enlargement when subjected to unilateral nephrectomy and more podocyte apoptosis and depletion after doxorubicin challenge. AKT phosphorylation, which is a slit diaphragm-mediated and nephrin-dependent pathway in the podocyte, was markedly reduced in mice with long-term or short-term nephrin knockdown challenged with uninephrectomy or doxorubicin. Taken together, our data establish that under the basal condition and in acquired glomerular diseases, nephrin is required to maintain slit diaphragm integrity and slit diaphragm-mediated signaling to preserve glomerular function and podocyte viability in adult mice.
Collapse
Affiliation(s)
- Xuezhu Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology; Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peter Y Chuang
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York;
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Yan Dai
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology, Shanghai First Municipal Hospital, Shanghai Jiaotao University School of Medicine; Shanghai, China
| | - Rabi Yacoub
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jin Xu
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Oltjon Taku
- State University of New York at University at Binghamton, Binghamton, New York
| | | | - Lawrence B Holzman
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J Peter Veterans Administration Medical Center, Bronx, New York
| |
Collapse
|
7
|
Abstract
At least 10% of adults and nearly all children who receive renal-replacement therapy have an inherited kidney disease. These patients rarely die when their disease progresses and can remain alive for many years because of advances in organ-replacement therapy. However, these disorders substantially decrease their quality of life and have a large effect on health-care systems. Since the kidneys regulate essential homoeostatic processes, inherited kidney disorders have multisystem complications, which add to the usual challenges for rare disorders. In this review, we discuss the nature of rare inherited kidney diseases, the challenges they pose, and opportunities from technological advances, which are well suited to target the kidney. Mechanistic insights from rare disorders are relevant for common disorders such as hypertension, kidney stones, cardiovascular disease, and progression of chronic kidney disease.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, Université catholique de Louvain, Brussels, Belgium; Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | - Nine V A M Knoers
- Department of Medical Genetics, Division of Biomedical Genetics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso and Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Franz Schaefer
- Pediatric Nephrology Division, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Powell DW, Kenagy DN, Zheng S, Coventry SC, Xu J, Cai L, Carlson EC, Epstein PN. Associations between structural and functional changes to the kidney in diabetic humans and mice. Life Sci 2013; 93:257-264. [PMID: 23800643 PMCID: PMC3770478 DOI: 10.1016/j.lfs.2013.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/09/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Type 1 and Type 2 diabetic patients are at high risk of developing diabetic nephropathy (DN). Renal functional decline is gradual and there is high variability between patients, though the reason for the variability is unknown. Enough diabetic patients progress to end stage renal disease to make diabetes the leading cause of renal failure. The first symptoms of DN do not appear for years or decades after the onset of diabetes. During and after the asymptomatic period structural changes develop in the diabetic kidney. Typically, but not always, the first symptom of DN is albuminuria. Loss of renal filtration rate develops later. This review examines the structural abnormalities of diabetic kidneys that are associated with and possibly the basis for advancing albuminuria and declining GFR. Mouse models of diabetes and genetic manipulations of these models have become central to research into mechanisms underlying DN. This article also looks at the value of these mouse models to understanding human DN as well as potential pitfalls in translating the mouse results to humans.
Collapse
Affiliation(s)
- David W. Powell
- Department of Medicine, University of Louisville, Louisville, KY
| | - David N. Kenagy
- Department of Pedatrics, University of Louisville, Louisville, KY
| | - Shirong Zheng
- Department of Pedatrics, University of Louisville, Louisville, KY
| | | | - Jianxiang Xu
- Department of Pedatrics, University of Louisville, Louisville, KY
| | - Lu Cai
- Department of Pedatrics, University of Louisville, Louisville, KY
| | - Edward C. Carlson
- Department of Anatomy and Cell Biology, University of North Dakota, Grand Forks, ND
| | - Paul N. Epstein
- Department of Pedatrics, University of Louisville, Louisville, KY
| |
Collapse
|
9
|
Microinjection into the lumen of the ureteric tree. Methods Mol Biol 2012. [PMID: 22639273 DOI: 10.1007/978-1-61779-851-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During embryonic kidney development, the ureteric bud (UB) undergoes repetitive branching to generate the entire renal collecting system. Defects in UB branching result in renal malformations, from hypoplastic kidneys to renal agenesis. Mouse genetics has become an invaluable tool to identify gene networks regulating UB branching, and the recent use of embryonic chimeras has provided further insight into the cell-autonomous regulation of this process. However, the generation of these mouse models is often resource- and time-consuming. A simplified alternative to the generation of mouse mutants or chimeras relies on the modification of UB gene expression ex vivo. This chapter describes a simple method for microinjection into the lumen of the ureteric tree of embryonic kidney explants. The mouse embryonic kidney is cultured on an air-medium interface and a thin pulled glass needle is used to access the ureteric tree and deliver the reagent of choice. The applications of the technique are multiple: from simple labeling of the ureteric tree with fluorescent markers to overexpression or downregulation of specific genes by introducing viral vectors, siRNAs, morpholinos, or other agents.
Collapse
|
10
|
Ding WY, Saleem MA. Current concepts of the podocyte in nephrotic syndrome. Kidney Res Clin Pract 2012; 31:87-93. [PMID: 26889414 PMCID: PMC4715158 DOI: 10.1016/j.krcp.2012.04.323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/09/2012] [Accepted: 04/12/2012] [Indexed: 01/08/2023] Open
Abstract
Nephrotic syndrome is a disorder of the glomerular filtration barrier, and central to the filtration mechanism of the glomerular filtration barrier is the podocyte. We are starting to better understand how this cell, with its unique architectural features, fulfils its exact filtration properties. The multiprotein complex between adjacent podocyte foot processes, the slit diaphragm, is essential to the control of the actin cytoskeleton and cell morphology. Many of the proteins within the slit diaphragm, including nephrin, podocin, transient receptor potential-6 channel, and α-actinin-4, have been identified via genetic studies of inherited nephrotic syndromes. Signaling from slit diaphragm proteins to the actin cytoskeleton is mediated via the Rho GTPases. These are thought to be involved in the control of podocyte motility, which has been postulated as a focus of proteinuric pathways. Nephrotic syndrome is currently treated with immunosuppressive therapy, with significant adverse effects. These therapies may work in nephrotic syndrome due to specific effects on the podocytes. This review aims to describe our current understanding of the cellular pathways and molecules within the podocyte relevant to nephrotic syndrome and its treatment. With our current knowledge of the cellular biology of the podocyte, there is much hope for targeted therapies for nephrotic syndromes.
Collapse
Affiliation(s)
- Wen Y Ding
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK
| | - Moin A Saleem
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|