1
|
Forouzanmehr B, Hemmati MA, Atkin SL, Jamialahmadi T, Yaribeygi H, Sahebkar A. GLP-1 mimetics and diabetic ketoacidosis: possible interactions and clinical consequences. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:351-362. [PMID: 39172148 DOI: 10.1007/s00210-024-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Diabetic ketoacidosis is a serious diabetes-related consequence that occurs in type 1 diabetes and less commonly in type 2 diabetes and is a major cause of death. It results from the metabolic consequences due to a lack of insulin secretion or impaired insulin activity in diabetes leading to dysregulated pathophysiologic pathways resulting in excessive ketone body formation. While ketone bodies are physiologic molecules, their high levels reduce the physiological pH of the blood and induce ketoacidosis, leading to increasing metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) mimetics are a class of recently developed diabetes therapy that do not lead to hypoglycemic, but some reports have suggested a relationship between GLP-1 mimetics and ketogenesis. To clarify the possible interactions between GLP-1 mimetics and ketogenesis in diabetes, this review was undertaken to collate and interpret the literature.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Shibasaki I, Nakajima T, Fukuda T, Hasegawa T, Ogawa H, Tsuchiya G, Takei Y, Tezuka M, Kato T, Kanazawa Y, Kano Y, Kuwata T, Ouchi M, Toyoda S, Aso Y, Fukuda H. Serum and Adipose Dipeptidyl Peptidase 4 in Cardiovascular Surgery Patients: Influence of Dipeptidyl Peptidase 4 Inhibitors. J Clin Med 2022; 11:jcm11154333. [PMID: 35893426 PMCID: PMC9331841 DOI: 10.3390/jcm11154333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP-4) is a novel adipokine and may be involved in the association between adipose tissue and metabolic syndrome. We investigated DPP-4 and adiponectin levels in the serum, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT), and their relationship with preoperative factors, as well as comparing the DPP-4 levels in SAT and EAT with and without DPP-4 inhibitors. This study included 40 patients (25 men, age 67.5 ± 13.8 years). The serum adipokine, DPP-4, and adiponectin levels in SAT and EAT were measured using ELISA and Western blotting. The DPP-4 and adiponectin levels were significantly higher in the SAT than in the EAT. The serum DPP-4 and DPP-4 activity levels had no correlation with the DPP-4 levels in the SAT and EAT, but the DPP-4 levels in the SAT and EAT had a positive correlation. The DPP-4 levels in the SAT were positively correlated with atherosclerosis, diabetes mellitus, DPP-4-inhibitor use, and fasting blood glucose. The DPP-4 levels in the EAT showed a negative correlation with eGFR and a positive correlation with atrial fibrillation. The DPP-4 activity in the serum had a lower tendency in the group taking DPP-4 inhibitors than in the group not taking them. DPP-4 inhibitors may suppress angiogenesis and adipose-tissue hypertrophy.
Collapse
Affiliation(s)
- Ikuko Shibasaki
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
- Correspondence:
| | - Toshiaki Nakajima
- Department of Medical KAATSU Training, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (T.N.); (T.H.)
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Taira Fukuda
- Department of Liberal Arts and Human Development, Kanagawa University of Human Services, Yokosuka 238-8522, Kanagawa, Japan;
| | - Takaaki Hasegawa
- Department of Medical KAATSU Training, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (T.N.); (T.H.)
| | - Hironaga Ogawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Go Tsuchiya
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Yusuke Takei
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Masahiro Tezuka
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Takashi Kato
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi 371-0811, Gunma, Japan; (T.K.); (T.K.)
| | - Yuta Kanazawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Yasuyuki Kano
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Toshiyuki Kuwata
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi 371-0811, Gunma, Japan; (T.K.); (T.K.)
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Hirotsugu Fukuda
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| |
Collapse
|
3
|
Nangaku M, Wanner C. Not only incretins for diabetic kidney disease-beneficial effects by DPP-4 inhibitors. Kidney Int 2021; 99:318-322. [PMID: 33509354 DOI: 10.1016/j.kint.2020.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Christoph Wanner
- Division of Nephrology, Würzburg University Clinic, Würzburg, Germany.
| |
Collapse
|
4
|
Blood Pressure-Lowering Effect of Newer Antihyperglycemic Agents (SGLT-2 Inhibitors, GLP-1 Receptor Agonists, and DPP-4 Inhibitors). Am J Cardiovasc Drugs 2021; 21:123-137. [PMID: 32780214 DOI: 10.1007/s40256-020-00423-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of arterial hypertension is high in patients with diabetes mellitus (DM). When DM and hypertension coexist, they constitute a dual cardiovascular threat and should be adequately controlled. Novel antihyperglycemic agents, including sodium-glucose co-transporter 2 (SGLT-2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and dipeptidyl peptidase-4 (DPP-4) inhibitors, have recently been used in the treatment of DM. Beyond their glucose-lowering effects, these drugs have shown beneficial pleiotropic cardiovascular effects, including lowering of arterial blood pressure (BP), as acknowledged in the 2019 European Society of Cardiology/European Association for the Study of Diabetes guidelines on diabetes, prediabetes, and cardiovascular diseases. The purpose of this review was to summarize the available information on the BP-reducing effects of these new glucose-lowering drug classes and provide a brief report on underlying pathophysiological mechanisms. We also compare the three drug classes (SGLT-2 inhibitors, GLP-1 RAs, and DPP-4 inhibitors) in terms of their BP-lowering effect and show that the greater BP reduction seems to be achieved with SGLT-2 inhibitors, whereas DPP-4 inhibitors have probably the mildest antihypertensive effect.
Collapse
|
5
|
Takamiya Y, Kobayashi K, Kudo T, Okuda T, Okamura K, Shirai K, Urata H. Comprehensive Efficacy of the Dipeptidyl Peptidase 4 Inhibitor Alogliptin in Practical Clinical Settings: A Prospective Multi-Center Interventional Observational Study. J Clin Med Res 2020; 12:423-430. [PMID: 32655736 PMCID: PMC7331869 DOI: 10.14740/jocmr4224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 11/11/2022] Open
Abstract
Background This study aimed to verify the safety and efficacy, including glycemic control, of the selective dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes. Methods This study used a multi-center, open-label, prospective observational design. Type 2 diabetes patients who were undergoing dietary therapy and/or exercise therapy alone without sufficient glycemic control (hemoglobin A1c (HbA1c) ≥ 6.5% and < 10%) were administered alogliptin (25 mg/day). The long-term effects (6 and 12 months) on blood glucose, blood pressure, heart rate, body weight and lipids were assessed. Results A final 50 patients were included with a high prevalence of hypertension (77%) and dyslipidemia (72%), and a mean duration of diabetes of 4.5 years. Pre-treatment HbA1c was 7.5% and was significantly decreased at 6 and 12 months (6M: 6.4%, 12M: 6.2%; P < 0.02 vs. 0M, respectively). Body weight, blood pressure and low-density lipoprotein cholesterol were significantly decreased by 6 months and maintained at 12 months. Triglycerides showed a significant decrease at 12 months. No significant differences were observed in HbA1c decrease for different grade of age, duration of diabetes, body mass index and renal function. The degree of decrease in HbA1c was most strongly correlated with pre-treatment HbA1c. Adverse events were noted in three patients, with no serious outcomes. Conclusion The blood glucose-lowering effect and safety of alogliptin were demonstrated regardless of baseline HbA1c, although its effect appeared stronger with higher pre-treatment HbA1c values. Additionally, alogliptin appears useful for managing atherosclerotic risk factors such as body weight and blood pressure.
Collapse
Affiliation(s)
- Yosuke Takamiya
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tadachika Kudo
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tetsu Okuda
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuyuki Shirai
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | | |
Collapse
|
6
|
Onoviran OF, Li D, Toombs Smith S, Raji MA. Effects of glucagon-like peptide 1 receptor agonists on comorbidities in older patients with diabetes mellitus. Ther Adv Chronic Dis 2019; 10:2040622319862691. [PMID: 31321014 PMCID: PMC6628533 DOI: 10.1177/2040622319862691] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Elderly patients with diabetes are at high risk of polypharmacy because of
multiple coexisting diseases and syndromes. Polypharmacy increases the risk of
drug–drug and drug–disease interactions in these patients, who may already have
age-related sensory and cognitive deficits; such deficits may delay timely
communication of early symptoms of adverse drug events. Several glucagon-like
peptide-1 receptor agonists (GLP-1 RAs) have been approved for diabetes:
liraglutide, exenatide, lixisenatide, dulagluatide, semaglutide, and
albiglutide. Some are also approved for treatment of obesity. The current review
of literature along with clinical case discussion provides evidence supporting
GLP-1 RAs as diabetes medications for polypharmacy reduction in older diabetes
patients because of their multiple pleiotropic effects on comorbidities (e.g.
hyperlipidemia, hypertension, and fatty liver) and syndromes (e.g. osteoporosis
and sleep apnea) that commonly co-occur with diabetes. Using one medication (in
this case, GLP-1 RAs) to address multiple conditions may help reduce costs,
medication burden, adverse drug events, and medication nonadherence.
Collapse
Affiliation(s)
- Olusola F Onoviran
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Dongming Li
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Sarah Toombs Smith
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Mukaila A Raji
- Division of Geriatric Medicine, Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0177, USA
| |
Collapse
|
7
|
Takamiya Y, Okamura K, Shirai K, Okuda T, Kobayashi K, Urata H. Multicenter prospective observational study of teneligliptin, a selective dipeptidyl peptidase-4 inhibitor, in patients with poorly controlled type 2 diabetes: Focus on glycemic control, hypotensive effect, and safety Chikushi Anti-Diabetes Mellitus Trial-Teneligliptin (CHAT-T). Clin Exp Hypertens 2019; 42:197-204. [PMID: 30974980 DOI: 10.1080/10641963.2019.1601207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: We purpose to confirm the effect of teneligliptin (Tenelia), a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, on glycemic control and non-glucose risk factors for macroangiopathy, including blood pressure, lipid metabolism, and body weight.Methods: In a prospective, multicenter, open-label, observational study, teneligliptin (20 mg/day) was administered to type 2 diabetic patients with poor glycemic control (HbA1c ≥ 6.5% to <10%) at our hospitals. The safety of teneligliptin and its impact on blood glucose, blood pressure, and the lipid profile were assessed after administration for 3 and 6 months.Results: One hundred and sixty-two patients were enrolled between February 2014 and August 2015. HbA1c was 7.6% at baseline and showed significant reduction to 7.1% after 3 months of treatment and to 6.9% after 6 months (both p < 0.01). Patients with poorly controlled hypertension (systolic blood pressure [SBP] ≥130 mmHg and/or diastolic blood pressure [DBP] ≥80 mmHg) at study initiation were extracted to investigate the effect of teneligliptin on blood pressure. SBP showed a significant decrease from 141.2 ± 9.8 mmHg at baseline to 131.1 ± 14.3 mmHg after 3 months and 133.9 ± 11.5 mmHg after 6 months (both p < 0.001). DBP also decreased significantly from 85.8 ± 5.7 mmHg at baseline to 78.4 ± 10.0 mmHg after 3 months and 79.7 ± 10.1 mmHg after 6 months (both p < 0.001). Adverse events were pruritus in four patients, and cerebral infarction was reported as a cerebrovascular event in one patient.Conclusions: Teneligliptin therapy was safe and improved glycemic control irrespective of baseline HbA1c. Blood pressure was also improved in patients with concomitant hypertension.
Collapse
Affiliation(s)
- Yosuke Takamiya
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuyuki Shirai
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tetsu Okuda
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|
8
|
Sano M. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. J Cardiol 2018; 73:28-32. [PMID: 30318179 DOI: 10.1016/j.jjcc.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral antidiabetic drugs that safely reduce the blood glucose level over the long term. In Japan, DPP-4 inhibitors have become the oral antidiabetic drugs most frequently prescribed for patients with type 2 diabetes. However, the results of several cardiovascular outcomes studies have suggested that some DPP-4 inhibitors may increase the risk of hospitalization for heart failure. In patients with diabetes, heart failure is the most frequent cardiovascular condition, and it has a negative impact on the quality of life as well as being a potentially fatal complication. Therefore, it is important to determine whether an increased risk of heart failure is associated with certain DPP-4 inhibitors or is a class effect of these drugs. This review explores the mechanism by which DPP-4 inhibitors may increase the risk of heart failure and possible differences among these drugs. The available research suggests that DPP-4 inhibitors cause sympathetic activation as a class effect and this may increase the risk of heart failure. Unlike other DPP-4 inhibitors, sitagliptin and alogliptin are mainly excreted in the urine and suppress renal sodium-hydrogen exchanger 3 activity. These two drugs did not increase the risk of hospitalization for heart failure in large-scale cardiovascular outcomes studies.
Collapse
Affiliation(s)
- Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Katayama S, Hatano M, Issiki M. Clinical features and therapeutic perspectives on hypertension in diabetics. Hypertens Res 2018; 41:213-229. [PMID: 29402981 PMCID: PMC8075885 DOI: 10.1038/s41440-017-0001-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023]
Abstract
Over 50% of patients with diabetes mellitus, either type 1 or 2, ultimately develop hypertension as a complication. In diabetics, this further increases the incidence of cardiovascular disease (CVD) by 2- to 3-fold and accelerates the progression of diabetic nephropathy. Arteriosclerosis, a clinical feature of hypertension in diabetics, develops and advances from a young age. Therefore, in providing treatment, it is necessary to evaluate the degree of arteriosclerosis. Diabetic patients are encouraged to strictly control their blood glucose levels. Recently developed drugs, such as GLP-1 receptor agonists, DPP-4 inhibitors and SGLT2 inhibitors, also have hypotensive actions, making them ideal for use in diabetics with hypertension. SGLT2 inhibitors and GLP-1 receptor agonists reportedly suppress the onset and progression of CVD, as well as diabetic nephropathy. The possibility of hypoglycemia triggering blood pressure elevation and arrhythmia has been noted, so a key point here is not to cause hypoglycemia. In selecting hypotensive agents, we must choose types that do not aggravate insulin resistance and engage in hypotensive treatment that also considers both nocturnal and morning hypertension. In addition, facing the onset of an aging society, there is a growing need for treatments that do not cause excessive blood pressure reduction or hypoglycemia. Favorable lifelong blood pressure and glucose control are increasingly important for the treatment of diabetes accompanied by hypertension.
Collapse
Affiliation(s)
| | - Masako Hatano
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masashi Issiki
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
10
|
Abstract
Worldwide, the number of patients with diabetes is increasing. Adults with diabetes have a two- to threefold increased risk of heart attack and stroke, and diabetic nephropathy is a leading cause of end-stage renal failure. Salt sensitivity of blood pressure is reported to be elevated in patients with diabetes. Hyperinsulinemia, hyperglycemia, and an activated sympathetic nervous system play key roles in the genesis of salt-sensitive blood pressure in individuals who are obese and/or have type 2 diabetes. In this review, I summarize previous research performed to improve our understanding of the relationship between salt and hypertension in diabetic patients.
Collapse
Affiliation(s)
- Takashi Uzu
- Division of Nephrology and Blood Purification, Nissay Hospital, 6-3-8 Itachibori, Nishi-ku, Osaka, 550-0012 Japan
| |
Collapse
|
11
|
Savignano FA, Crajoinas RO, Pacheco BPM, Campos LCG, Shimizu MHM, Seguro AC, Girardi ACC. Attenuated diuresis and natriuresis in response to glucagon-like peptide-1 in hypertensive rats are associated with lower expression of the glucagon-like peptide-1 receptor in the renal vasculature. Eur J Pharmacol 2017; 811:38-47. [PMID: 28576404 DOI: 10.1016/j.ejphar.2017.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022]
Abstract
Accumulating evidence from clinical and experimental studies indicates that the incretin glucagon-like peptide-1 (GLP-1) elicits blood-pressure lowering effects via its diuretic, natriuretic and vasodilatory properties. The present study investigated whether acute infusion of GLP-1 induces diuresis and natriuresis in spontaneously hypertensive rats (SHRs). Additionally, we examined whether GLP-1 influences the vascular reactivity of the renal arteries of normotensive and hypertensive rats and elucidated the underlying mechanisms. We found that the increase in urinary output and urinary sodium excretion in response to systemic infusion of GLP-1 for 30min in SHRs was much less pronounced than in normotensive rats. The diuretic and natriuretic actions of GLP-1 in normotensive rats were accompanied by increases in GFR and RBF and a reduction in RVR through activation of the cAMP signaling pathway. However, no changes in renal hemodynamics were observed in SHRs. Similarly, GLP-1 induced an endothelium-independent relaxation effect in the renal arteries of normotensive rats, whereas the renal vasculature of SHRs was unresponsive to this vasodilator. The absence of a GLP-1-induced renal artery vasodilator effect in SHRs was associated with lower expression of the GLP-1 receptor, blunted GLP-1-induced increases in cAMP production and higher activity and expression of the GLP-1 inactivating enzyme dipeptidyl peptidase IV relative to the renal arteries of normotensive rats. Collectively, these results demonstrate that the renal acute responses to GLP-1 are attenuated in SHRs. Thus, chronic treatment with incretin-based agents may rely upon the upregulation of GLP-1/GLP-1 receptor signaling in the kidneys of hypertensive patients and experimental models.
Collapse
Affiliation(s)
- Fernanda A Savignano
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Renato O Crajoinas
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Bruna P M Pacheco
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Luciene C G Campos
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Maria Heloisa M Shimizu
- Department of Nephrology (LIM-12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM-12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Adriana C C Girardi
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Scheen AJ. Pharmacokinetics and clinical evaluation of the alogliptin plus pioglitazone combination for type 2 diabetes. Expert Opin Drug Metab Toxicol 2015; 11:1005-20. [PMID: 25936384 DOI: 10.1517/17425255.2015.1041499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Type 2 diabetes is a complex disease with multiple defects, which generally requires a combination of several pharmacological approaches to reach glucose control targets. A unique fixed-dose combination combines a thiazolidinedione (pioglitazone) and a dipeptidyl peptidase-4 inhibitor (alogliptin). AREA COVERED An extensive literature search was performed to analyze the pharmacokinetics of pioglitazone and alogliptin when used separately and in combination as well as to summarize clinical and toxicological considerations about the combined therapy. EXPERT OPINION Pioglitazone, a potent insulin sensitizer, and alogliptin, an incretin-based agent that potentiates post-meal insulin secretion and reduces glucagon secretion, have complementary mechanisms of action. The clinical efficacy of a combined therapy is superior to any single therapy in patients treated with diet or with metformin (with or without sulphonylurea). These two drugs can be administered once daily, with or without a meal. No clinically relevant pharmacokinetic interactions between the two agents have been described and the fixed-dose combination has shown bioequivalence with alogliptin and pioglitazone given separately. Combining alogliptin with pioglitazone does not alter the safety profile of each compound. Weight gain observed with pioglitazone may be limited with the addition of alogliptin. The concern of an increased risk of heart failure remains to be better investigated.
Collapse
Affiliation(s)
- André J Scheen
- University of Liège, Center for Interdisciplinary Research on Medicines (CIRM), Division of Diabetes, Nutrition and Metabolic Disorders and Division of Clinical Pharmacology, Department of Medicine, CHU Sart Tilman , Liège , Belgium +32 4 3667238 ; +32 4 3667068 ; andre.scheen@ chu.ulg.ac.be
| |
Collapse
|
13
|
Effects of incretin agonists on endothelial nitric oxide synthase expression and nitric oxide synthesis in human coronary artery endothelial cells exposed to TNFα and glycated albumin. Pharmacol Rep 2015; 67:69-77. [PMID: 25560578 DOI: 10.1016/j.pharep.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/25/2022]
|
14
|
Avogaro A, de Kreutzenberg S, Fadini G. Dipeptidyl-peptidase 4 inhibition: linking metabolic control to cardiovascular protection. Curr Pharm Des 2014; 20:2387-94. [PMID: 23844811 PMCID: PMC4030590 DOI: 10.2174/13816128113199990474] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/19/2013] [Indexed: 12/15/2022]
Abstract
Dipeptidyl peptidases 4 (DPP4) inhibitors are a new class of oral anti-hyperglycemic drugs for the treatment of type 2 diabetes (T2DM). They are also called "incretins" because they act by inhibiting the degradation of endogenous incretin hormones, in particular GLP-1, that mediates their main metabolic effects. DPP4 is an ubiquitous protease that regulates not only glucose and lipid metabolism, but also exhibits several systemic effects at different site levels. DPP4 inhibition improves endothelial function, reduces the pro-oxidative and the pro-inflammatory state, and exerts renal effects. These actions are mediated by different DPP4 ligands, such as cytokines, growth factors, neuotransmitters etc. Clinical and experimental studies have demonstrated that DPP4 inhibitors are efficient in protecting cardiac, renal and vascular systems, through antiatherosclerotic and vasculoprotective mechanisms. For these reasons DDP4 inhibitors are thought to be "cardiovascular protective" as well as anti-diabetic drugs. Clinical trials aimed to demonstrate the efficacy of DPP4 inhibitors in reducing cardiovascular events, independent of their anti-hyperglycemic action, are ongoing. These trials will also give necessary information on their safety.
Collapse
Affiliation(s)
| | | | - Gianpaolo Fadini
- Cattedra di Malattie del Metabolismo, Dipartimento di Medicina. Universita di Padova, Via Giustiniani, 2, 35128 Padova - Italia.
| |
Collapse
|
15
|
Abstract
Incretin-based therapy became recently available as antihyperglycemic treatment for patients with type 2 diabetes (T2DM). Incretin therapy comprises glucagon-like peptide receptor agonists (GLP-1RA) and dipeptidyl-peptidase 4 inhibitors (DPP4-I): these classes of drugs not only have the ability to reduce blood glucose, but also can exert several cardioprotective effects. They have been shown to positively influence some risk factors for cardiovascular disease (CVD), to improve endothelial function, and to directly affect cardiac function. For these reasons incretins are considered not only antidiabetic drugs, but also cardiovascular effective. The first clinical trials aimed to demonstrate the safety of DPP4 inhibitors have been recently published: their clinical significance will be discussed in light of the prior experimental findings.
Collapse
Affiliation(s)
- Angelo Avogaro
- Malattie del Metabolismo, Dipartimento di Medicina-DIMED, Università di Padova, Via Giustiniani, 2, 35120, Padova, Italy,
| | | | | |
Collapse
|
16
|
Scheen AJ. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes. Postgrad Med 2013; 125:7-20. [PMID: 23748503 DOI: 10.3810/pgm.2013.05.2659] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are oral incretin-based glucose-lowering agents with proven efficacy and safety in the management of type 2 diabetes mellitus (T2DM). In addition, preclinical data and mechanistic studies suggest a possible additional non-glycemic beneficial action on blood vessels and the heart, via both glucagon-like peptide-1-dependent and glucagon-like peptide-1-independent effects. As a matter of fact, DPP-4 inhibitors improve several cardiovascular risk factors: they improve glucose control (mainly by reducing the risk of postprandial hyperglycemia) and are weight neutral; may lower blood pressure somewhat; improve postprandial (and even fasting) lipemia; reduce inflammatory markers; diminish oxidative stress; improve endothelial function; and reduce platelet aggregation in patients with T2DM. In addition, positive effects on the myocardium have been described in patients with ischemic heart disease. Results of post hoc analyses of phase 2/3 controlled trials suggest a possible cardioprotective effect with a trend (sometimes significant) toward lower incidence of major cardiovascular events with sitagliptin, vildagliptin, saxagliptin, linagliptin, or alogliptin compared with placebo or other active glucose-lowering agents. However, the definite relationship between DPP-4 inhibition and better cardiovascular outcomes remains to be proven. Major prospective clinical trials involving various DPP-4 inhibitors with predefined cardiovascular outcomes are under way in patients with T2DM and a high-risk cardiovascular profile: the Sitagliptin Cardiovascular Outcome Study (TECOS) on sitagliptin, the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 trial on saxagliptin, the Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome (EXAMINE) trial on alogliptin, and the Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes (CAROLINA) on linagliptin. If these trials confirm that a DPP-4 inhibitor can reduce the cardiovascular burden of T2DM, it would be major progress that would dramatically influence the management of the disease.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Sart Tilman, University of Liège, Liège, Belgium.
| |
Collapse
|
17
|
Kutina AV, Marina AS, Shakhmatova EI, Natochin YV. Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin Exp Pharmacol Physiol 2013; 40:510-7. [DOI: 10.1111/1440-1681.12119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/30/2013] [Accepted: 05/16/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Anna V Kutina
- Laboratory of Renal Physiology and Water-Salt Balance; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St Petersburg Russia
| | - Anna S Marina
- Laboratory of Renal Physiology and Water-Salt Balance; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St Petersburg Russia
| | - Elena I Shakhmatova
- Laboratory of Renal Physiology and Water-Salt Balance; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St Petersburg Russia
| | - Yury V Natochin
- Laboratory of Renal Physiology and Water-Salt Balance; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|
18
|
Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013; 226:305-314. [PMID: 23083681 DOI: 10.1016/j.atherosclerosis.2012.09.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/22/2012] [Accepted: 09/14/2012] [Indexed: 02/09/2023]
Abstract
The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events.
Collapse
Affiliation(s)
- Jixin Zhong
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
19
|
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors (commonly referred to as gliptins) are a novel class of oral antihyperglycaemic agents with demonstrated efficacy in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data and mechanistic studies have indicated a possible beneficial action on blood vessels and the heart, via both glucagon-like peptide 1 (GLP-1)-dependent and GLP-1-independent effects. DPP-4 inhibition increases the concentration of many peptides with potential vasoactive and cardioprotective effects. Clinically, DPP-4 inhibitors improve several risk factors in patients with T2DM. They improve blood glucose control (mainly by reducing postprandial glycaemia), are weight neutral (or even induce modest weight loss), lower blood pressure, improve postprandial lipaemia, reduce inflammatory markers, diminish oxidative stress, and improve endothelial function. Some positive effects on the heart have also been described in patients with ischaemic heart disease or congestive heart failure, although their clinical relevance requires further investigation. Post-hoc analyses of phase II-III, controlled trials suggest a possible cardioprotective effect with a trend for a lower incidence of major cardiovascular events with gliptins than with placebo or active agents. However, the actual relationship between DPP-4 inhibition and cardiovascular outcomes remains to be proven. Major prospective clinical trials with predefined cardiovascular outcomes and involving various DPP-4 inhibitors are now underway in patients with T2DM and a high-risk cardiovascular profile.
Collapse
|
20
|
Janssen P, Rotondo A, Mulé F, Tack J. Review article: a comparison of glucagon-like peptides 1 and 2. Aliment Pharmacol Ther 2013; 37:18-36. [PMID: 23121085 DOI: 10.1111/apt.12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/09/2012] [Accepted: 09/29/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent advancements in understanding the roles and functions of glucagon-like peptide 1 (GLP-1) and 2 (GLP-2) have provided a basis for targeting these peptides in therapeutic strategies. AIM To summarise the preclinical and clinical research supporting the discovery of new therapeutic molecules targeting GLP-1 and GLP-2. METHODS This review is based on a comprehensive PubMed search, representing literature published during the past 30 years related to GLP-1 and GLP-2. RESULTS Although produced and secreted together primarily from L cells of the intestine in response to ingestion of nutrients, GLP-1 and GLP-2 exhibit distinctive biological functions that are governed by the expression of their respective receptors, GLP-1R and GLP-2R. Through widespread expression in the pancreas, intestine, nervous tissue, et cetera, GLP-1Rs facilitates an incretin effect along with effects on appetite and satiety. GLP-1 analogues resistant to degradation by dipeptidyl peptidase-IV and inhibitors of dipeptidyl peptidase-IV have been developed to aid treatment of diabetes and obesity. The GLP-2R is expressed almost exclusively in the stomach and bowel. The most apparent role for GLP-2 is its promotion of growth and function of intestinal mucosa, which has been targeted for therapies that promote repair and adaptive growth. These are used as treatments for intestinal failure and related conditions. CONCLUSIONS Our growing understanding of the biology and function of GLP-1, GLP-2 and corresponding receptors has fostered further discovery of fundamental biological function as well as new categories of potent therapeutic medicines.
Collapse
Affiliation(s)
- P Janssen
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Giannocco G, Oliveira KC, Crajoinas RO, Venturini G, Salles TA, Fonseca-Alaniz MH, Maciel RMB, Girardi ACC. Dipeptidyl peptidase IV inhibition upregulates GLUT4 translocation and expression in heart and skeletal muscle of spontaneously hypertensive rats. Eur J Pharmacol 2012; 698:74-86. [PMID: 23051671 DOI: 10.1016/j.ejphar.2012.09.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022]
Abstract
The purpose of the current study was to test the hypothesis that the dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin, which exerts anti-hyperglycemic and anti-hypertensive effects, upregulates GLUT4 translocation, protein levels, and/or mRNA expression in heart and skeletal muscle of spontaneously hypertensive rats (SHRs). Ten days of treatment with sitagliptin (40 mg/kg twice daily) decreased plasma DPPIV activity in both young (Y, 5-week-old) and adult (A, 20-week-old) SHRs to similar extents (~85%). However, DPPIV inhibition only lowered blood pressure in Y-SHRs (119 ± 3 vs. 136 ± 4 mmHg). GLUT4 translocation, total protein levels and mRNA expression were decreased in the heart, soleus and gastrocnemius muscle of SHRs compared to age-matched Wistar Kyoto (WKY) normotensive rats. These differences were much more pronounced between A-SHRs and A-WKY rats than between Y-SHRs and Y-WKY rats. In Y-SHRs, sitagliptin normalized GLUT4 expression in the heart, soleus and gastrocnemius. In A-SHRs, sitagliptin increased GLUT4 expression to levels that were even higher than those of A-WKY rats. Sitagliptin enhanced the circulating levels of the DPPIV substrate glucagon-like peptide-1 (GLP-1) in SHRs. In addition, stimulation of the GLP-1 receptor in cardiomyocytes isolated from SHRs increased the protein level of GLUT4 by 154 ± 13%. Collectively, these results indicate that DPPIV inhibition upregulates GLUT4 in heart and skeletal muscle of SHRs. The underlying mechanism of sitagliptin-induced upregulation of GLUT4 in SHRs may be, at least partially, attributed to GLP-1.
Collapse
Affiliation(s)
- Gisele Giannocco
- Department of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Girardi ACC, Di Sole F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol 2012; 302:C1569-87. [DOI: 10.1152/ajpcell.00017.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Na+/H+ exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders.
Collapse
Affiliation(s)
| | - Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
- Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
24
|
Abstract
INTRODUCTION Dipeptidylpeptidase-4 (DPP-4) inhibitors offer new options for the management of type 2 diabetes (T2DM). AREAS COVERED This paper is an updated review, providing an analysis of both the similarities and the differences between the various compounds known as gliptins, currently used in the clinic (sitagliptin, vildagliptin, saxagliptin, alogliptin and linagliptin). This paper discusses the pharmacokinetic and pharmacodynamic characteristics of gliptins; both the efficacy and safety profiles of gliptins in clinical trials (compared with classical glucose-lowering agents), given as monotherapy or in combination, including in special populations; the positioning of DPP-4 inhibitors in the management of T2DM in recent guidelines; and various unanswered questions and perspectives. EXPERT OPINION The role of DPP-4 inhibitors in the therapeutic armamentarium of T2DM is evolving, as their potential strengths and weaknesses become better defined. Future critical issues may include the durability of glucose control, resulting from better β-cell protection, positive effects on cardiovascular outcomes and long-term safety issues.
Collapse
Affiliation(s)
- André J Scheen
- University of Liège, Division of Diabetes, Nutrition and Metabolic Disorders, and Division of Clinical Pharmacology, Department of Medicine, CHU Sart Tilman (B35), B-4000 LIEGE 1, Belgium.
| |
Collapse
|
25
|
Abstract
Drugs that augment the incretin system [glucagon like peptide (GLP) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors] represent a novel class of anti-hyperglycemic agents that have shown to improve the health and survival of beta-cells (improvement in postprandial hyperglycemia) and suppress glucagon (improvement in fasting hyperglycemia). The incretins represent a large family of molecules referred to as the "glucagon superfamily of peptide hormones" of which more than 90% of the physiological effects of incretins are accomplished by GLP-1(7-37) and GLP1(7-36) amide and gastric insulinotropic peptide (GIP). GLP-1 mediates its effects via the GLP-1 receptor, which has a wide tissue distribution [pancreas, lung, heart, vascular smooth muscle cells, endothelial cells, macrophages and monocytes, kidney, gastrointestinal tract (stomach and intestine), central nervous system (neoortex, cerebellum, hypothalamus, hippocampus, brainstem nucleus tractus solitarius) and peripheral nervous system]. This would imply that the incretin system has effects outside the pancreas. Over time data has accumulated to suggest that therapies that augment the incretin system has beneficial pleiotrophic effects. The incretins have shown to possess a cardiac-friendly profile, preserve neuronal cells and safeguard from neuronal degeneration, improve hepatic inflammation and hepatosteatosis, improve insulin resistance, promote weight loss and induce satiety. There is growing evidence that they may also be renoprotective promoting wound healing and bone health.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Endocrinology, Jaslok Hospital and Research Centre, Mumbai, India
| |
Collapse
|