1
|
Reijnders E, van der Laarse A, Jukema JW, Cobbaert CM. High residual cardiovascular risk after lipid-lowering: prime time for Predictive, Preventive, Personalized, Participatory, and Psycho-cognitive medicine. Front Cardiovasc Med 2023; 10:1264319. [PMID: 37908502 PMCID: PMC10613690 DOI: 10.3389/fcvm.2023.1264319] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
As time has come to translate trial results into individualized medical diagnosis and therapy, we analyzed how to minimize residual risk of cardiovascular disease (CVD) by reviewing papers on "residual cardiovascular disease risk". During this review process we found 989 papers that started off with residual CVD risk after initiating statin therapy, continued with papers on residual CVD risk after initiating therapy to increase high-density lipoprotein-cholesterol (HDL-C), followed by papers on residual CVD risk after initiating therapy to decrease triglyceride (TG) levels. Later on, papers dealing with elevated levels of lipoprotein remnants and lipoprotein(a) [Lp(a)] reported new risk factors of residual CVD risk. And as new risk factors are being discovered and new therapies are being tested, residual CVD risk will be reduced further. As we move from CVD risk reduction to improvement of patient management, a paradigm shift from a reductionistic approach towards a holistic approach is required. To that purpose, a personalized treatment dependent on the individual's CVD risk factors including lipid profile abnormalities should be configured, along the line of P5 medicine for each individual patient, i.e., with Predictive, Preventive, Personalized, Participatory, and Psycho-cognitive approaches.
Collapse
Affiliation(s)
- E. Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - A. van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - J. W. Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - C. M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Pressly JD, Gurumani MZ, Varona Santos JT, Fornoni A, Merscher S, Al-Ali H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am J Physiol Cell Physiol 2022; 322:C468-C481. [PMID: 35108119 PMCID: PMC8917915 DOI: 10.1152/ajpcell.00239.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.
Collapse
Affiliation(s)
- Jeffrey D. Pressly
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Z. Gurumani
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier T. Varona Santos
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Hassan Al-Ali
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida,3Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida,4The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida,5Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
3
|
Zeng C, Yan C, Guo S, Zhu H, Chen Y, Zhan X. High-density lipoprotein cholesterol to apolipoprotein A1 ratio and all-cause mortality among incident peritoneal dialysis patients. Nutr Metab Cardiovasc Dis 2021; 31:3457-3463. [PMID: 34656383 DOI: 10.1016/j.numecd.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS The ratio of high-density lipoprotein cholesterol to apolipoprotein A1 (HAR) is associated with all-cause mortality in nonchronic kidney disease patients, but its role in predicting all-cause mortality in patients undergoing peritoneal dialysis (PD) is still unclear. The purpose of this study was to investigate the relationship between HAR and all-cause mortality in patients with PD. METHODS AND RESULTS The medical records of 1199 patients with PD from November 1, 2005, to August 31, 2019, were collected retrospectively. The main outcome was defined as all-cause mortality. The HAR was divided into three groups by X-tile software. The association between HAR and all-cause mortality was evaluated by Cox models. The Kaplan-Meier method was used for the survival curve. The median follow-up period was 35 months (interquartile range: 20-57 months), with a total of 326 deaths recorded. After multiple adjustments, the risk of all-cause mortality in the high HAR group was 1.96-fold higher than that in the low HAR group (hazard ratio: 1.96; 95% CI, 1.22 to 3.15; P = 0.005). The restricted cubic splines showed that the risk of all-cause mortality increased gradually when HAR was >0.37. In the stratified analysis, a high HAR was linked to a high risk of all-cause mortality in males, patients under 55 years old, and patients without diabetes or cardiovascular disease (CVD). CONCLUSION This study suggests that HAR is independently related to all-cause mortality in PD patients, especially in males, patients under 55 years old, and patients without diabetes or CVD.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Caixia Yan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shan Guo
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, China
| | - Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yanbing Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
4
|
Maeba R, Araki A, Fujiwara Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv Clin Chem 2018; 87:69-111. [PMID: 30342713 DOI: 10.1016/bs.acc.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that metabolic disorders, particularly type 2 diabetes mellitus (T2DM), and dementia, including Alzheimer's disease (AD), were linked at the clinical and molecular levels. Brain insulin deficiency and resistance may be key events in AD pathology mechanistically linking AD to T2DM. Ethanolamine plasmalogens (PlsEtns) are abundant in the brain and play essential roles in neuronal function and myelin formation. As such, PlsEtn deficiency may be pathologically relevant in some neurodegenerative disorders such as AD. Decreased brain PlsEtn associated with dementia may reflect serum PlsEtn deficiency. We hypothesized that myo-inositol plays a role in myelin formation through its facilitation of PlsEtn biosynthesis. Excessive urinary myo-inositol (UMI) loss would likely result in PlsEtn deficiency potentially leading to demyelinating diseases such as dementia. Accordingly, measurement of both serum PlsEtn and baseline UMI excretion could improve the detection of cognitive impairment (CI) in a more specific and reliable manner. To verify our hypothesis, we conducted a clinical observational study of memory clinic outpatients (MCO) and cognitively normal elderly (NE) for nearly 4.5years. We demonstrated that serum PlsEtn concentration associated with UMI excretion was useful for predicting advancing dementia in patients with mild CI. Because hyperglycemia and associated insulin resistance might be a leading cause of increased baseline UMI excretion, serum PlsEtn quantitation would be useful in detecting CI among the elderly with hyperglycemia. Our findings suggest that myo-inositol is a novel candidate molecule linking T2DM to AD.
Collapse
Affiliation(s)
- Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
5
|
Su H, Wan C, Lei CT, Zhang CY, Ye C, Tang H, Qiu Y, Zhang C. Lipid Deposition in Kidney Diseases: Interplay Among Redox, Lipid Mediators, and Renal Impairment. Antioxid Redox Signal 2018; 28:1027-1043. [PMID: 28325081 DOI: 10.1089/ars.2017.7066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significance: The relationship between lipid disturbances and renal diseases has been studied for several decades, and it is well recognized that when the balance of renal lipid uptake, synthesis, oxidation, and outflow is disrupted, lipids will undergo oxidation, be sequestrated as lipid droplets, generate toxic metabolites, and cause nephrotoxicity in diverse renal diseases. Recent Advances: During renal disorders, redox signaling is a pivotal event promoting or resulting from lipid disorders. Accordingly, a vicious cycle of lipid redox dysregulation could be developed, accelerating the renal damage. Critical Issues: The aim of this concise review is to introduce the connection among redox, lipid abnormalities and kidney damage in various conditions. And we summarized current understanding of the lipid redox loop implicated in acute kidney injury, chronic kidney disease, metabolic abnormalities, aging, and genetic pitfalls. Future Directions: Despite recent advances, further investigations are required to clarify the complicated molecular and regulatory mechanisms among redox, lipid mediators and renal disorders. Moreover, exploring an ideal target for potential therapies should be discussed and studied in future. Antioxid. Redox Signal. 28, 1027-1043.
Collapse
Affiliation(s)
- Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Association of cholesterol efflux capacity with plasmalogen levels of high-density lipoprotein: A cross-sectional study in chronic kidney disease patients. Atherosclerosis 2018; 270:102-109. [DOI: 10.1016/j.atherosclerosis.2018.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/18/2022]
|
7
|
Borges DL, Lemes HP, de Castro Ferreira V, Filho SRF. High-sensitivity C-reactive protein, apolipoproteins, and residual diuresis in chronic kidney disease patients undergoing hemodialysis. Clin Exp Nephrol 2016; 20:943-950. [PMID: 26768861 DOI: 10.1007/s10157-016-1230-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Residual diuresis (RD) is the simplest method for measuring renal residual function in patients with chronic kidney disease (CKD). A reduction in RD is associated with intensification of the inflammatory process caused by uremia. However, little is known regarding the relation between RD and inflammatory markers in these patients. We verify possible associations among the hs-CRP, atherogenic factors, and RD, in patients with CKD undergoing hemodialysis. METHODS This study enrolled 80 patients with CKD undergoing hemodialysis. Patients were stratified according to RD in anuric (RD-) group (n = 47) and non-anuric (RD+) group (n = 33). Urine volumes were collected in a 24 h period during the interdialytic period. Serum high-sensitivity C-reactive protein (hs-CRP), and apolipoprotein (Apo) A1 and B levels were measured after fasting for 12 h. RESULTS Serum hs-CRP levels were higher in the RD- group than in the RD+ group (P = 0.015). In the total group, hs-CRP was significantly correlated with RD (r = - 0.25, P = 0.025) and Apo AI (r = - 0.25, P = 0.024). A greater proportion of patients had reduced plasma concentrations of Apo AI in the RD- group (31.9 %) compared with the RD+ group (9.1 %) (P = 0.014). CONCLUSION This study shows a relationship between RD and the hs-CRP in patients undergoing hemodialysis. Although the inflammatory state was verified in a large part of the CKD population, patients without RD had more elevated hs-CRP serum levels than those with RD.
Collapse
Affiliation(s)
- Daniela Lemos Borges
- Internal Medicine Department, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Sebastião Rodrigues Ferreira Filho
- Internal Medicine Department, Federal University of Uberlândia, Uberlândia, MG, Brazil. .,Research Unit, Nefroclínica de Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Abd Alamir M, Radulescu V, Goyfman M, Mohler ER, Gao YL, Budoff MJ. Prevalence and correlates of mitral annular calcification in adults with chronic kidney disease: Results from CRIC study. Atherosclerosis 2015; 242:117-22. [PMID: 26188533 PMCID: PMC4546905 DOI: 10.1016/j.atherosclerosis.2015.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Risk factors for mitral annular calcification (MAC) and cardiovascular disease (CVD) demonstrate significant overlap in the general population. The aim of this paper is to determine whether there are independent relationships between MAC and demographics, traditional and novel CVD risk factors using cardiac CT in the Chronic Renal Insufficiency Cohort (CRIC) in a cross-sectional study. METHODS A sample of 2070 subjects underwent coronary calcium scanning during the CRIC study. Data were obtained for each participant at time of scan. SUBJECTS were dichotomized into the presence and absence of MAC. Differences in baseline demographic and transitional risk factor data were evaluated across groups. Covariates used in multivariable adjustment were age, gender, BMI, HDL, LDL, lipid lowering medications, smoking status, family history of heart attack, hypertension, diabetes mellitus, phosphate, PTH, albuminuria, and calcium. RESULTS Our study consisted of 2070 subjects, of which 331 had MAC (prevalence of 16.0%). The mean MAC score was 511.98 (SD 1368.76). Age and white race remained independently associated with presence of MAC. Decreased GFR was also a risk factor. African American and Hispanic race, as well as former smoking status were protective against MAC. In multivariable adjusted analyses, the remaining covariates were not significantly associated with MAC. Among renal covariates, elevated phosphate was significant. CONCLUSION In the CRIC population, presence of MAC was independently associated with age, Caucasian race, decreased GFR, and elevated phosphate. These results are suggested by mechanisms of dysregulation of inflammation, hormones, and electrolytes in subjects with renal disease.
Collapse
Affiliation(s)
- Moshrik Abd Alamir
- Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Vlad Radulescu
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | | | - Emile R Mohler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Lin Gao
- Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA.
| |
Collapse
|
9
|
Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol Metabolism in CKD. Am J Kidney Dis 2015; 66:1071-82. [PMID: 26337134 DOI: 10.1053/j.ajkd.2015.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY.
| | - Iryna Voloshyna
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| | - Joshua De Leon
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| | - Nobuyuki Miyawaki
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| | - Joseph Mattana
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| |
Collapse
|
10
|
Eren E, Yılmaz N, Aydin O, Ellidağ HY. Anticipatory role of high density lipoprotein and endothelial dysfunction: an overview. Open Biochem J 2014; 8:100-6. [PMID: 25598849 PMCID: PMC4293742 DOI: 10.2174/1874091x01408010100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
High Density Lipoprotein (HDL) has been witnessed to possess a range of different functions that contribute to its atheroprotective effects. These functions are: the promotion of macrophage cholesterol efflux, reverse cholesterol transport, anti-inflammatory, anti-thrombotic, anti-apoptotic, pro-fibrinolytic and anti-oxidative functions. Paraoxonase 1 (PON1) is an HDL associated enzyme esterase/homocysteinethiolactonase that contributes to the anti-oxidant and anti-atherosclerotic capabilities of HDL. PON1 is directly involved in the etiopathogenesis of atherosclerosis through the modulation of nitric oxide (NO) bioavailability. The aim of this review is to summarize the role of HDL on endothelial homeostasis, and also to describe the recently characterized molecular pathways involved.
Collapse
Affiliation(s)
- Esin Eren
- Laboratory of Atatürk Hospital, Antalya/Turkey
| | - Necat Yılmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya/Turkey
| | - Ozgur Aydin
- Laboratory of Batman Maternity and Children's Hospital, Batman/Turkey
| | - Hamit Y Ellidağ
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya/Turkey
| |
Collapse
|
11
|
Kopecky C, Haidinger M, Birner-Grünberger R, Darnhofer B, Kaltenecker CC, Marsche G, Holzer M, Weichhart T, Antlanger M, Kovarik JJ, Werzowa J, Hecking M, Säemann MD. Restoration of renal function does not correct impairment of uremic HDL properties. J Am Soc Nephrol 2014; 26:565-75. [PMID: 25071090 DOI: 10.1681/asn.2013111219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death in renal transplant recipients, but the underlying causative mechanisms for this important problem remain elusive. Recent work has indicated that qualitative alterations of HDL affect its functional and compositional properties in ESRD. Here, we systematically analyzed HDL from stable renal transplant recipients, according to graft function, and from patients with ESRD to determine whether structural and functional properties of HDL remain dysfunctional after renal transplantation. Cholesterol acceptor capacity and antioxidative activity, representing two key cardioprotective mechanisms of HDL, were profoundly suppressed in kidney transplant recipients independent of graft function and were comparable with levels in patients with ESRD. Using a mass spectroscopy approach, we identified specific remodeling of transplant HDL with highly enriched proteins, including α-1 microglobulin/bikunin precursor, pigment epithelium-derived factor, surfactant protein B, and serum amyloid A. In conclusion, this study demonstrates that HDL from kidney recipients is uniquely altered at the molecular and functional levels, indicating a direct pathologic role of HDL that could contribute to the substantial cardiovascular risk in the transplant population.
Collapse
Affiliation(s)
- Chantal Kopecky
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Michael Haidinger
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | | | | | | | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; and
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; and
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Marlies Antlanger
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Johannes J Kovarik
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Johannes Werzowa
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Manfred Hecking
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Marcus D Säemann
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| |
Collapse
|
12
|
Eren E, Yilmaz N, Aydin O. Functionally defective high-density lipoprotein and paraoxonase: a couple for endothelial dysfunction in atherosclerosis. CHOLESTEROL 2013; 2013:792090. [PMID: 24222847 PMCID: PMC3814057 DOI: 10.1155/2013/792090] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022]
Abstract
The endothelium is the primary target for biochemical or mechanical injuries caused by the putative risk factors of atherosclerosis. Endothelial dysfunction represents the ultimate link between atherosclerotic risk factors that promote atherosclerosis. HDL-C is thought to exert at least some parts of its antiatherogenic facilities via stimulating endothelial NO production, nearby inhibiting oxidative stress and inflammation. HDL-C is capable of opposing LDL's inductive effects and avoiding the ox-LDL's inhibition of eNOS. Paraoxonase 1 (PON1) is an HDL-associated enzyme esterase which appears to contribute to the antioxidant and antiatherosclerotic capabilities of HDL-C. "Healthy HDL," namely the particle that contains the active Paraoxonase 1, has the power to suppress the formation of oxidized lipids. "Dysfunctional HDL," on the contrary, has reduced Paraoxonase 1 enzyme activity and not only fails in its mission but also potentially leads to greater formation of oxidized lipids/lipoproteins to cause endothelial dysfunction. The association of HDL-C PON1 and endothelial dysfunction depends largely on the molecules with exact damaging effect on NO synthase coupling. Loss of nitric oxide bioavailability has a pivotal role in endothelial dysfunction preceding the appearance of atherosclerosis. Analyses of HDL-C and Paraoxonase1 would be more important in the diagnosis and treatment of atherosclerosis in the very near future.
Collapse
Affiliation(s)
- Esin Eren
- Laboratory of Atatürk Hospital, 07040 Antalya, Turkey
| | - Necat Yilmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, 07100 Antalya, Turkey
- Antalya Eğitim ve Araştırma Hastanesi Merkez Laboratuvarı Soğuksu, 07100 Antalya, Turkey
| | - Ozgur Aydin
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, 07100 Antalya, Turkey
| |
Collapse
|