1
|
Deantonio L, Castronovo F, Paone G, Treglia G, Zilli T. Metabolic Imaging for Radiation Therapy Treatment Planning: The Role of Hybrid PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:637-654. [PMID: 37741647 DOI: 10.1016/j.mric.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
The use of hybrid PET/MR imaging for radiotherapy treatment planning has the potential to reduce tumor and organ displacements caused by different scan times and setup changes. Although with mixed results mainly due to single-center studies with small sample size, PET/MR imaging could provide better target delineation, especially by reducing coregistration discrepancies on computed tomography simulation scan and offering better soft tissue contrast. The main limitation to drive stronger conclusions is due to the relatively low availability of hybrid PET/MR imaging systems, mainly limited to large academic centers.
Collapse
Affiliation(s)
- Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland
| | - Francesco Castronovo
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona 6500, Switzerland
| | - Gaetano Paone
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland; Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona 6500, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland; Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Thomas Zilli
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland; Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
2
|
Impact of 18F-FDG PET/MR based tumor delineation in radiotherapy planning for cholangiocarcinoma. Abdom Radiol (NY) 2021; 46:3908-3916. [PMID: 33772615 DOI: 10.1007/s00261-021-03053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiation therapy (RT) is an effective treatment for unresectable cholangiocarcinoma (CC). Accurate tumor volume delineation is critical in achieving high rates of local control while minimizing treatment-related toxicity. This study compares 18F-FDG PET/MR to MR and CT for target volume delineation for RT planning. METHODS We retrospectively included 22 patients with newly diagnosed unresectable primary CC who underwent 18F-FDG PET/MR for initial staging. Gross tumor volume (GTV) of the primary mass (GTVM) and lymph nodes (GTVLN) were contoured on CT images, MR images, and PET/MR fused images and compared among modalities. The dice similarity coefficient (DSC) was calculated to assess spatial coverage between different modalities. RESULTS GTV M PET/MR (median: 94 ml, range 16-655 ml) was significantly greater than GTV M MR (69 ml, 11-635 ml) (p = 0.0001) and GTV M CT (96 ml, 4-564 ml) (p = 0.035). There was no significant difference between GTV M CT and GTV M MR (p = 0.078). Subgroup analysis of intrahepatic and extrahepatic tumors showed that the median GTV M PET/MR was significantly greater than GTV M MR in both groups (117.5 ml, 22-655 ml vs. 102.5 ml, 22-635 ml, p = 0.004 and 37 ml, 16-303 ml vs. 34 ml, 11-207 ml, p = 0.042, respectively). The GTV LN PET/MR (8.5 ml, 1-27 ml) was significantly higher than GTV LN CT (5 ml, 4-16 ml) (p = 0.026). GTVPET/MR had the highest similarity to the GTVMR, i.e., DSCPET/MR-MR (0.82, 0.25-1.00), compared to DSC PET/MR-CT of 0.58 (0.22-0.87) and DSCMR-CT of 0.58 (0.03-0.83). CONCLUSION 18F-FDG PET/MR-based CC delineation yields greater GTVs and detected a higher number of positive lymph nodes compared to CT or MR, potentially improving RT planning by reducing the risk of geographic misses.
Collapse
|
3
|
Arshad MA, Gitau S, Tam H, Park WHE, Patel NH, Rockall A, Aboagye EO, Bharwani N, Barwick TD. Optimal method for metabolic tumour volume assessment of cervical cancers with inter-observer agreement on [18F]-fluoro-deoxy-glucose positron emission tomography with computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:2009-2023. [PMID: 33313962 PMCID: PMC8113292 DOI: 10.1007/s00259-020-05136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Cervical cancer metabolic tumour volume (MTV) derived from [18F]-FDG PET/CT has a role in prognostication and therapy planning. There is no standard method of outlining MTV on [18F]-FDG PET/CT. The aim of this study was to assess the optimal method to outline primary cervical tumours on [18F]-FDG PET/CT using MRI-derived tumour volumes as the reference standard. METHODS 81 consecutive cervical cancer patients with pre-treatment staging MRI and [18F]-FDG PET/CT imaging were included. MRI volumes were compared with different PET segmentation methods. Method 1 measured MTVs at different SUVmax thresholds ranging from 20 to 60% (MTV20-MTV60) with bladder masking and manual adjustment when required. Method 2 created an isocontour around the tumour prior to different SUVmax thresholds being applied. Method 3 used an automated gradient method. Inter-observer agreement of MTV, following manual adjustment when required, was recorded. RESULTS For method 1, the MTV25 and MTV30 were closest to the MRI volumes for both readers (mean percentage change from MRI volume of 2.9% and 13.4% for MTV25 and - 13.1% and - 2.0% for MTV30 for readers 1 and 2). 70% of lesions required manual adjustment at MTV25 compared with 45% at MTV30. There was excellent inter-observer agreement between MTV30 to MTV60 (ICC ranged from 0.898-0.976 with narrow 95% confidence intervals (CIs)) and moderate agreement at lower thresholds (ICC estimates of 0.534 and 0.617, respectively for the MTV20 and MTV25 with wide 95% CIs). Bladder masking was performed in 86% of cases overall. For method 2, excellent correlation was demonstrated at MTV25 and MTV30 (mean % change from MRI volume of -3.9% and - 8.6% for MTV25 and - 16.9% and 19% for MTV30 for readers 1 and 2, respectively). This method also demonstrated excellent ICC across all thresholds with no manual adjustment. Method 3 demonstrated excellent ICC of 0.96 (95% CI 0.94-0.97) but had a mean percentage difference from the MRI volume of - 19.1 and - 18.2% for readers 1 and 2, respectively. 21% required manual adjustment for both readers. CONCLUSION MTV30 provides the optimal correlation with MRI volume taking into consideration the excellent inter-reader agreement and less requirement for manual adjustment.
Collapse
Affiliation(s)
- Mubarik A Arshad
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK.
| | - Samuel Gitau
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
| | - Henry Tam
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
| | - Won-Ho E Park
- Department of Clinical Oncology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
| | - Neva H Patel
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
| | - Andrea Rockall
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London Cancer Imaging Centre, Du Cane Road, London, W12 0NN, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London Cancer Imaging Centre, Du Cane Road, London, W12 0NN, UK
| | - Nishat Bharwani
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London Cancer Imaging Centre, Du Cane Road, London, W12 0NN, UK
| | - Tara D Barwick
- Departments of Radiology and Nuclear Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS, UK
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London Cancer Imaging Centre, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
4
|
Decazes P, Hinault P, Veresezan O, Thureau S, Gouel P, Vera P. Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Front Oncol 2021; 10:614008. [PMID: 33614497 PMCID: PMC7890017 DOI: 10.3389/fonc.2020.614008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) has revolutionized external radiotherapy by making it possible to visualize and segment the tumors and the organs at risk in a three-dimensional way. However, if CT is a now a standard, it presents some limitations, notably concerning tumor characterization and delineation. Its association with functional and anatomical images, that are positron emission tomography (PET) and magnetic resonance imaging (MRI), surpasses its limits. This association can be in the form of a trimodality PET/CT/MRI. The objective of this mini-review is to describe the process of performing this PET/CT/MRI trimodality for radiotherapy and its potential clinical applications. Trimodality can be performed in two ways, either a PET/MRI fused to a planning CT (possibly with a pseudo-CT generated from the MRI for the planning), or a PET/CT fused to an MRI and then registered to a planning CT (possibly the CT of PET/CT if calibrated for radiotherapy). These examinations should be performed in the treatment position, and in the second case, a patient transfer system can be used between the PET/CT and MRI to limit movement. If trimodality requires adapted equipment, notably compatible MRI equipment with high-performance dedicated coils, it allows the advantages of the three techniques to be combined with a synergistic effect while limiting their disadvantages when carried out separately. Trimodality is already possible in clinical routine and can have a high clinical impact and good inter-observer agreement, notably for head and neck cancers, brain tumor, prostate cancer, cervical cancer.
Collapse
Affiliation(s)
- Pierre Decazes
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Ovidiu Veresezan
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Sébastien Thureau
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| |
Collapse
|
5
|
Fiorentino A, Laudicella R, Ciurlia E, Annunziata S, Lancellotta V, Mapelli P, Tuscano C, Caobelli F, Evangelista L, Marino L, Quartuccio N, Fiore M, Borghetti P, Chiaravalloti A, Ricci M, Desideri I, Alongi P. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 2. Crit Rev Oncol Hematol 2019; 139:117-124. [PMID: 30940428 DOI: 10.1016/j.critrevonc.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Positron Emission Tomography with Computed Tomography (PET/CT) has been proven to be useful in the definition of Radiotherapy (RT) target volume. In this regard, the present expert review summarizes existing data for pancreas, prostate, gynecological and rectum/anal cancer. METHODS A comprehensive search of published original article was made, based on SCOPUS and PubMed database, selecting the paper that evaluated the role of PET/CT in the definition of RT volume. RESULTS FDG-PET has an important and promising role for pancreatic cancer. Choline PET/CT could be useful for identifying high-risk volumes for prostate cancer; while PSMA PET/CT is still under evaluation. FDG PET/CT in gynecological cancers has been shown to impact external-beam RT planning. The role of FDG-PET for Gross Tumor volume identification is crucial, representing a useful and powerful tool for anal and rectal cancer. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic approach.
Collapse
Affiliation(s)
- Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti-Bari, Italy.
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Valentina Lancellotta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Roma, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu, Italy
| |
Collapse
|
6
|
Cree A, Livsey J, Barraclough L, Dubec M, Hambrock T, Van Herk M, Choudhury A, McWilliam A. The Potential Value of MRI in External-Beam Radiotherapy for Cervical Cancer. Clin Oncol (R Coll Radiol) 2018; 30:737-750. [PMID: 30209010 DOI: 10.1016/j.clon.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
Abstract
The reference standard treatment for cervical cancer is concurrent chemoradiotherapy followed by magnetic resonance imaging (MRI)-guided brachytherapy. Improvements in brachytherapy have increased local control rates, but late toxicity remains high with rates of 11% grade ≥3. The primary clinical target volume (CTV) for external-beam radiotherapy includes the cervix and uterus, which can show significant inter-fraction motion. This means that generous margins are required to cover the primary CTV, increasing the radiation dose to organs at risk and, therefore, toxicity. A number of image-guided radiotherapy techniques (IGRT) have been developed, but motion can be random and difficult to predict prior to treatment. In light of the development of integrated MRI linear accelerators, this review discusses the potential value of MRI in external-beam radiotherapy. Current solutions for managing pelvic organ motion are reviewed, including the potential for online adaptive radiotherapy. The impacts of the use of MRI in tumour delineation and in the delivery of stereotactic ablative body radiotherapy (SABR) are highlighted. The potential role and challenges of using multi parametric MRI to guide radiotherapy are also discussed.
Collapse
Affiliation(s)
- A Cree
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust Christie Hospital, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - J Livsey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - L Barraclough
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - M Dubec
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - T Hambrock
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - M Van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust Christie Hospital, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - A Choudhury
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust Christie Hospital, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - A McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust Christie Hospital, Manchester Academic Health Science Centre, Manchester M20 4BX, UK.
| |
Collapse
|
7
|
Lai AYT, Perucho JAU, Xu X, Hui ES, Lee EYP. Concordance of FDG PET/CT metabolic tumour volume versus DW-MRI functional tumour volume with T2-weighted anatomical tumour volume in cervical cancer. BMC Cancer 2017; 17:825. [PMID: 29207964 PMCID: PMC5718076 DOI: 10.1186/s12885-017-3800-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background 18F–fluoro-deoxyglucose positron emission tomography with computed tomography (FDG PET/CT) has been employed to define radiotherapy targets using a threshold based on the standardised uptake value (SUV), and has been described for use in cervical cancer. The aim of this study was to evaluate the concordance between the metabolic tumour volume (MTV) measured on FDG PET/CT and the anatomical tumour volume (ATV) measured on T2-weighted magnetic resonance imaging (T2W-MRI); and compared with the functional tumour volume (FTV) measured on diffusion-weighted MRI (DW-MRI) in cervical cancer, taking the T2W-ATV as gold standard. Methods Consecutive newly diagnosed cervical cancer patients who underwent FDG PET/CT and DW-MRI were retrospectively reviewed from June 2013 to July 2017. Volumes of interest was inserted to the focal hypermetabolic activity corresponding to the cervical tumour on FDG PET/CT with automated tumour contouring and manual adjustment, based on SUV 20%–80% thresholds of the maximum SUV (SUVmax) to define the MTV20–80, with intervals of 5%. Tumour areas were manually delineated on T2W-MRI and multiplied by slice thickness to calculate the ATV. FTV were derived by manually delineating tumour area on ADC map, multiplied by the slice thickness to determine the FTV(manual). Diffusion restricted areas was extracted from b0 and ADC map using K-means clustering to determine the FTV(semi-automated). The ATVs, FTVs and the MTVs at different thresholds were compared using the mean and correlated using Pearson’s product-moment correlation. Results Twenty-nine patients were evaluated (median age 52 years). Paired difference of mean between ATV and MTV was the closest and not statistically significant at MTV30 (−2.9cm3, −5.2%, p = 0.301). This was less than the differences between ATV and FTV(semi-automated) (25.0cm3, 45.1%, p < 0.001) and FTV(manual) (11.2cm3, 20.1%, p = 0.001). The correlation of MTV30 with ATV was excellent (r = 0.968, p < 0.001) and better than that of the FTVs. Conclusions Our study demonstrated that MTV30 was the only parameter investigated with no statistically significant difference with ATV, had the least absolute difference from ATV, and showed excellent positive correlation with ATV, suggesting its superiority as a functional imaging modality when compared with DW-MRI and supporting its use as a surrogate for ATV for radiotherapy tumour contouring.
Collapse
Affiliation(s)
- Alta Y T Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong Special Administrative Region, China
| | - Jose A U Perucho
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Xiaopei Xu
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Edward S Hui
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Elaine Y P Lee
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China.
| |
Collapse
|
8
|
Maingon P. Argumentaire clinique pour la radiothérapie guidée par imagerie par résonance magnétique. Cancer Radiother 2016; 20:558-63. [DOI: 10.1016/j.canrad.2016.07.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022]
|
9
|
Accuracy of PET/MRI coregistration of cervical lesions. Nucl Med Commun 2016; 37:997-8. [DOI: 10.1097/mnm.0000000000000554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
|
11
|
Comparison of the Performances of (18)F-FP-CIT Brain PET/MR and Simultaneous PET/CT: a Preliminary Study. Nucl Med Mol Imaging 2016; 50:219-27. [PMID: 27540426 DOI: 10.1007/s13139-016-0419-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE (18)F-FP-CIT [(18)F-fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane] has been well established and used for the differential diagnosis of atypical parkinsonian disorders. Recently, combined positron emission tomography (PET)/magnetic resonance (MR) was proposed as a viable alternative to PET/computed tomography (CT). The aim of this study was to compare the performances of conventional (18)F-FP-CIT brain PET/CT and simultaneous PET/MR by visual inspection and quantitative analysis. METHODS Fifteen consecutive patients clinically suspected of having Parkinson's disease were recruited for the study.(18)F-FP-CIT PET was performed during PET/CT and PET/MR. PET/CT image acquisition was started 90 min after intravenous injection of (18)F-FP-CIT and then PET/MR images were acquired. Dopamine transporter (DAT) density in bilateral striatal subregions was assessed visually. Quantitative analyses were performed on bilateral striatal volumes of interest (VOIs) using average standardized uptake values (SUVmeans). Intraclass correlation coefficients (ICCs) and their 95 % confidence intervals (CIs) were assessed to compare PET/CT and PET/MR data. Bland-Altman plots were drawn to perform method-comparisons. RESULTS All subjects showed a preferential decrease in DAT binding in the posterior putamen (PP), with relative sparing of the ventral putamen (VP). Bilateral striatal subregional binding ratio (BR) determined PET/CT and PET/MR demonstrated close interequipment correspondence (BRright caudate - ICC, 0.944; 95 % CI, 0.835-0.981, BRleft caudate - ICC, 0.917; 95 % CI, 0.753-0.972, BRright putamen - ICC, 0.976; 95 % CI, 0.929-0.992 and BRleft putamen - ICC, 0.970; 95 % CI, 0.911-0.990, respectively), and Bland-Altman plots showed interequipment agreement between the two modalities. CONCLUSIONS It is known that MR provides more information about anatomical changes associated with brain diseases and to enable the anatomical allocations of subregions than CT, though this was not observed in the present study. Although the subregional BR of simultaneous PET/MR was comparable to that of PET/CT in Parkinson's disease, our isocontouring method could make bias. A future automated method using standard template study or manual segmentation of putamen/caudate based on MR or CT is needed.
Collapse
|
12
|
|
13
|
Abstract
PET imaging has contributed substantially in oncology by allowing improved clinical staging and guiding appropriate cancer management. Integration with radiotherapy planning via PET/computed tomography (CT) simulation enables improved target delineation, which is paramount for conformal radiotherapy techniques. This article reviews the present literature regarding implications of PET/CT for radiotherapy planning and management.
Collapse
Affiliation(s)
- Beant S Gill
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5230 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Sarah S Pai
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stacey McKenzie
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5230 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Sushil Beriwal
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|